## Mathjax

Mathjax를 사용하려면, $$ 또는 $$$$안에 수식을 넣어야 합니다.

### $\dot {x}$

• \dot {x}: $\dot {x}$
• \ddot {x}: $\ddot {x}$
• \dddot {x}: $\dddot {x}$
• \ddddot {x}: $\ddddot {x}$
• \hat {x}: $\hat {x}$
• \check {x}: $\check {x}$
• \acute {x}: $\acute {x}$
• \grave {x}: $\grave {x}$
• \breve {x}: $\breve {x}$
• \tilde {x}: $\tilde {x}$
• \bar {x}: $\bar {x}$
• \vec {x}: $\vec {x}$
• \mathring {x}: $\mathring {x}$

• \overline {xyz}: $\overline {xyz}$
• \underline {xyz}: $\underline {xyz}$
• \overleftarrow {xyz}: $\overleftarrow {xyz}$
• \underleftarrow {xyz}: $\underleftarrow {xyz}$
• \overrightarrow {xyz}: $\overrightarrow {xyz}$
• \underrightarrow {xyz}: $\underrightarrow {xyz}$
• \overleftrightarrow {xyz}: $\overleftrightarrow {xyz}$
• \underleftrightarrow {xyz}: $\underleftrightarrow {xyz}$

• \overbrace {A_1, A_2, \ldots, A_{N-1}, A_N}: $\overbrace {A_1, A_2, \ldots, A_{N-1}, A_N}$
• \underbrace {A_1, A_2, \ldots, A_{N-1}, A_N}: $\underbrace {A_1, A_2, \ldots, A_{N-1}, A_N}$
• \widehat {A_1, A_2, \ldots, A_{N-1}, A_N}: $\widehat {A_1, A_2, \ldots, A_{N-1}, A_N}$
• \widetilde {A_1, A_2, \ldots, A_{N-1}, A_N}: $\widetilde {A_1, A_2, \ldots, A_{N-1}, A_N}$

• \xleftarrow {A_i} \xleftarrow [3]{A_i} \xrightarrow [3]{A_i} \xrightarrow {A_i}: $\xleftarrow {A_i} \xleftarrow [3]{A_i} \xrightarrow [3]{A_i} \xrightarrow {A_i}$

• \boxed {N^2}: $\boxed {N^2}$

### $\prec$

• A \prec B: $A \prec B$
• A \succ B: $A \succ B$
• A \preceq B: $A \preceq B$
• A \succeq B: $A \succeq B$
• A \precsim B: $A \precsim B$
• A \succsim B: $A \succsim B$
• A \asymp B: $A \asymp B$

• A \parallel B: $A \parallel B$
• A \vdash B: $A \vdash B$
• A \dashv B: $A \dashv B$
• A \models B: $A \models B$

### $\alpha$

$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$

\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega

$\alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \varphi \chi \psi \omega$

\alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \varphi \chi \psi \omega

$\varepsilon \vartheta \varpi \varrho \varsigma \varphi$

\varepsilon \vartheta\varpi \varrho \varsigma \varphi 

### $\ell$

$\ell \mho \partial \forall \exists \nexists \aleph \beth$

\ell \mho \partial \forall \exists \nexists \aleph \beth 

### $\mathbb{R}$

• \mathbb: Blackboard bold
• \mathbf: Boldface
• \mathtt: Typewriter font
• \mathrm: Roman font
• \mathsf: Sans-serif font
• \mathcal: Calligraphic
• \mathscr: Script
• \mathfrak: Fraktur (old German style)

• 알파벳: $A B C D E F G H I J K L M N O P Q R S T U V W X Y Z$
• \mathbb{알파벳}: $\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}$
• \mathbf{알파벳}: $\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}$
• \mathtt{알파벳}: $\mathtt{A} \mathtt{B} \mathtt{C} \mathtt{D} \mathtt{E} \mathtt{F} \mathtt{G} \mathtt{H} \mathtt{I} \mathtt{J} \mathtt{K} \mathtt{L} \mathtt{M} \mathtt{N} \mathtt{O} \mathtt{P} \mathtt{Q} \mathtt{R} \mathtt{S} \mathtt{T} \mathtt{U} \mathtt{V} \mathtt{W} \mathtt{X} \mathtt{Y} \mathtt{Z}$
• \mathrm{알파벳}: $\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}$
• \mathsf{알파벳}: $\mathsf{A} \mathsf{B} \mathsf{C} \mathsf{D} \mathsf{E} \mathsf{F} \mathsf{G} \mathsf{H} \mathsf{I} \mathsf{J} \mathsf{K} \mathsf{L} \mathsf{M} \mathsf{N} \mathsf{O} \mathsf{P} \mathsf{Q} \mathsf{R} \mathsf{S} \mathsf{T} \mathsf{U} \mathsf{V} \mathsf{W} \mathsf{X} \mathsf{Y} \mathsf{Z}$
• \mathcal{알파벳}: $\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}$
• \mathscr{알파벳}: $\mathscr{A} \mathscr{B} \mathscr{C} \mathscr{D} \mathscr{E} \mathscr{F} \mathscr{G} \mathscr{H} \mathscr{I} \mathscr{J} \mathscr{K} \mathscr{L} \mathscr{M} \mathscr{N} \mathscr{O} \mathscr{P} \mathscr{Q} \mathscr{R} \mathscr{S} \mathscr{T} \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z}$
• \mathfrak{알파벳}: $\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}$

• 알파벳: $a b c d e f g h i j k l m n o p q r s t u v w x y z$
• \mathbb{알파벳}: $\mathbb{a} \mathbb{b} \mathbb{c} \mathbb{d} \mathbb{e} \mathbb{f} \mathbb{g} \mathbb{h} \mathbb{i} \mathbb{j} \mathbb{k} \mathbb{l} \mathbb{m} \mathbb{n} \mathbb{o} \mathbb{p} \mathbb{q} \mathbb{r} \mathbb{s} \mathbb{t} \mathbb{u} \mathbb{v} \mathbb{w} \mathbb{x} \mathbb{y} \mathbb{z}$
• \mathbf{알파벳}: $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}$
• \mathtt{알파벳}: $\mathtt{a} \mathtt{b} \mathtt{c} \mathtt{d} \mathtt{e} \mathtt{f} \mathtt{g} \mathtt{h} \mathtt{i} \mathtt{j} \mathtt{k} \mathtt{l} \mathtt{m} \mathtt{n} \mathtt{o} \mathtt{p} \mathtt{q} \mathtt{r} \mathtt{s} \mathtt{t} \mathtt{u} \mathtt{v} \mathtt{w} \mathtt{x} \mathtt{y} \mathtt{z}$
• \mathrm{알파벳}: $\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}$
• \mathsf{알파벳}: $\mathsf{a} \mathsf{b} \mathsf{c} \mathsf{d} \mathsf{e} \mathsf{f} \mathsf{g} \mathsf{h} \mathsf{i} \mathsf{j} \mathsf{k} \mathsf{l} \mathsf{m} \mathsf{n} \mathsf{o} \mathsf{p} \mathsf{q} \mathsf{r} \mathsf{s} \mathsf{t} \mathsf{u} \mathsf{v} \mathsf{w} \mathsf{x} \mathsf{y} \mathsf{z}$
• \mathcal{알파벳}: $\mathcal{a} \mathcal{b} \mathcal{c} \mathcal{d} \mathcal{e} \mathcal{f} \mathcal{g} \mathcal{h} \mathcal{i} \mathcal{j} \mathcal{k} \mathcal{l} \mathcal{m} \mathcal{n} \mathcal{o} \mathcal{p} \mathcal{q} \mathcal{r} \mathcal{s} \mathcal{t} \mathcal{u} \mathcal{v} \mathcal{w} \mathcal{x} \mathcal{y} \mathcal{z}$
• \mathscr{알파벳}: $\mathscr{a} \mathscr{b} \mathscr{c} \mathscr{d} \mathscr{e} \mathscr{f} \mathscr{g} \mathscr{h} \mathscr{i} \mathscr{j} \mathscr{k} \mathscr{l} \mathscr{m} \mathscr{n} \mathscr{o} \mathscr{p} \mathscr{q} \mathscr{r} \mathscr{s} \mathscr{t} \mathscr{u} \mathscr{v} \mathscr{w} \mathscr{x} \mathscr{y} \mathscr{z}$
• \mathfrak{알파벳}: $\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}$

### Space

• A B: $A B$
• A B: $A B$
• A \, B: $A \, B$
• A \; B: $A \; B$
• A \quad B: $A \quad B$
• A \qquad B: $A \qquad B$

### Text

• \{x\in s\mid x is even number\}: $\{x\in s\mid x is even number\}$
• \{x\in s\mid x\text{ is even number}\}: $\{x\in s\mid x\text{ is even number}\}$

### $\$ $\\는 줄 바꿈이기 때문에, \를 입력하려면 \backslash를 사용해야 합니다. • \$: $\$ $• \backslash:$\backslash$• \_:$ \_ $###$\rightarrow\to \leftarrow \rightarrow \uparrow \downarrow \leftrightarrow \updownarrow$\to \leftarrow \rightarrow \uparrow \downarrow \leftrightarrow \updownarrow$\Leftarrow \Rightarrow \Uparrow \Downarrow \Leftrightarrow \Updownarrow$\Leftarrow \Rightarrow \Uparrow \Downarrow \Leftrightarrow \Updownarrow$\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow$\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow$\nearrow \nwarrow \searrow \swarrow$\nearrow \nwarrow \searrow \swarrow $\nleftarrow \nrightarrow \nleftrightarrow \nLeftarrow \nRightarrow \nLeftrightarrow$\nleftarrow \nrightarrow \nleftrightarrow \nLeftarrow \nRightarrow \nLeftrightarrow$\dashleftarrow \dashrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow$\dashleftarrow \dashrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow$\leftharpoonup \leftharpoondown \rightharpoonup \rightharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons$\leftharpoonup \leftharpoondown \rightharpoonup \rightharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons$\leftleftarrows \rightrightarrows \upuparrows \downdownarrows \leftrightarrows \rightleftarrows$\leftleftarrows \rightrightarrows \upuparrows \downdownarrows \leftrightarrows \rightleftarrows $\looparrowleft \looparrowright \leftarrowtail \rightarrowtail \Lsh \Rsh \Lleftarrow \Rrightarrow \twoheadleftarrow \twoheadrightarrow$\looparrowleft \looparrowright \leftarrowtail \rightarrowtail \Lsh \Rsh \Lleftarrow \Rrightarrow \twoheadleftarrow \twoheadrightarrow$\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \multimap \leftrightsquigarrow \leadsto \rightsquigarrow$\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \multimap \leftrightsquigarrow \leadsto \rightsquigarrow  ###$\llless$• A \llless B:$A \llless B$• A \gggtr B:$A \gggtr B$• A \leqq B:$A \leqq B$• A \geqq B:$A \geqq B$• A \lesssim B:$A \lesssim B$• A \gtrsim B:$A \gtrsim B$• A \lessdot B:$A \lessdot B$• A \gtrdot B:$A \gtrdot B$• A \lessgtr B:$A \lessgtr B$• A \gtrless B:$A \gtrless B$• A \lesseqgtr B:$A \lesseqgtr B$• A \gtreqless B:$A \gtreqless B$• A \doteqdot B:$A \doteqdot B$• A \fallingdotseq B:$A \fallingdotseq B$• A \risingdotseq B:$A \risingdotseq B$###$\infty \infty \surd \emptyset \nabla \blacksquare \neg \angle \measuredangle \sphericalangle \bot \parallel \prime$\infty \surd \emptyset \nabla \blacksquare \neg \angle \measuredangle \sphericalangle \bot \parallel \prime$\blacksquare \triangle\blacktriangle \triangledown \blacktriangledown \Box \Diamond \blacklozenge \bigstar$\blacksquare \triangle \blacktriangle \triangledown \blacktriangledown \Box \Diamond \blacklozenge \bigstar$\top \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \dagger \ddagger$ \top \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \dagger \ddagger$\S \hslash \circledS \diagup \diagdown \backprime$\S \hslash \circledS \diagup \diagdown \backprime$\bigodot \bigotimes \bigoplus \biguplus$\bigodot \bigotimes \bigoplus \biguplus $\boxminus \boxtimes \boxdot \boxplus \divideontimes $\boxminus \boxtimes \boxdot \boxplus \divideontimes $\ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \intercal $\ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \intercal $\circleddash \oplus \ominus \otimes \oslash \odot \circledast \circledcirc $\circleddash \oplus \ominus \otimes \oslash \odot \circledast \circledcirc $\lhd \rhd \unlhd \unrhd \backsim $\lhd \rhd \unlhd \unrhd \backsim $\Vdash \Vvdash \eqcirc \circeq \bumpeq \between \pitchfork \doteq $\Vdash \Vvdash \eqcirc \circeq \bumpeq \between \pitchfork \doteq $\varsubsetneqq \varsupsetneqq \lneq \gneq \lneqq \gneqq \lnsim \gnsim \lnapprox \gnapprox $\varsubsetneqq \varsupsetneqq \lneq \gneq \lneqq \gneqq \lnsim \gnsim \lnapprox \gnapprox $\nsim \precneqq \succneqq \precnsim \succnsim \precnapprox \succnapprox $\nsim \precneqq \succneqq \precnsim \succnsim \precnapprox \succnapprox $\subsetneq \supsetneq \subsetneqq \supsetneqq \nprec \nsucc \npreceq \nsucceq \ncong $\subsetneq \supsetneq \subsetneqq \supsetneqq \nprec \nsucc \npreceq \nsucceq \ncong $\nvdash \nVdash \nVDash \ntriangleleft \ntriangleright \ntrianglelefteq \ntrianglerighteq \nmid \nparallel \nsubseteq \nsupseteq \$

\nvdash \nVdash \nVDash \ntriangleleft \ntriangleright \ntrianglelefteq \ntrianglerighteq \nmid \nparallel \nsubseteq \nsupseteq