Mathjax를 사용하려면, $
와 $
또는 $$
와 $$
안에 수식을 넣어야 합니다.
$
는 inline Math로 문장 사이에 넣을 때, $$
는 Display Math로 한 줄을 모두 차지하게 됩니다.
1부터 N까지 합: $\sum_{i=1}^{n} {i^2} = \frac{(2n+1)(n+1)n}{6}$
$$\sum_{i=1}^{n} {i^2} = \frac{(2n+1)(n+1)n}{6}$$
블로그를 제외한 온라인 저지 다른 곳에서는 $
대신 \(
와 \)
를 , $$
대신 \[
와 \]
를 사용해야 합니다.
$+$
A + B = C
: $A + B = C$A - B = C
: $A - B = C$A * B = C
: $A * B = C$A \times B = C
: $A \times B = C$A / B = C
: $A / B = C$A \div B = C
: $A \div B = C$A \pm B = C
: $A \pm B = C$A \mp B = C
: $A \mp B = C$A \ast B = C
: $A \ast B = C$A \circ B = C
: $A \circ B = C$A \bullet B = C
: $A \bullet B = C$A \cdot B = C
: $A \cdot B = C$A \oplus B = C
: $A \oplus B = C$A \ominus B = C
: $A \ominus B = C$A \otimes B = C
: $A \otimes B = C$A \odot B = C
: $A \odot B = C$A \circledast B = C
: $A \circledast B = C$A \circledcirc B = C
: $A \circledcirc B = C$A \star B = C
: $A \star B = C$A \diamond B = C
: $A \diamond B = C$
$e^x$
e^x
: $e^x$a_i
: $a_i$a_i-1
: $a_i-1$a_{i-1}
: $a_{i-1}$x^2 + 2x + 1
: $x^2 + 2x + 1$a_i^2
: $a_i^2$a_{i-1}^2+3
: $a_{i-1}^2+3$a_{i-1}^{2+3}
: $a_{i-1}^{2+3}$a^b^c
: $a^b^c${a^b}^c
: ${a^b}^c$a^{b^c}
: $a^{b^c}$
a^b^c
는 (a^b)^c
인지 a^(b^c)
인지 알 수가 없기 때문에 렌더링을 하지 않습니다.
$\le$
A \lt B
: $A \lt B$A < B
: $A < B$A \le B
: $A \le B$A ≤ B
: $A ≤ B$A \ge B
: $A \ge B$A ≥ B
: $A ≥ B$A \gt B
: $A \gt B$A > B
: $A > B$A = B
: $A = B$A \ne B
: $A \ne B$A ≠ B
: $A ≠ B$A \nless B
: $A \nless B$A \nleq B
: $A \nleq B$A \ngtr B
: $A \ngtr B$A \ngeq B
: $A \ngeq B$
연산자 앞에 \not
을 붙여서 \le
$\le$를 \not\le
$\not\le$ 로 바꿀 수 있습니다.
$\ldots$
A_1, A_2, \ldots, A_{N-1}, A_N
: $A_1, A_2, \ldots, A_{N-1}, A_N$A_1 + A_2 + \cdots + A_{N-1} + A_N
: $A_1 + A_2 + \cdots + A_{N-1} + A_N$\therefore
: $\therefore$\because
: $\because$\vdots
: $\vdots$\ddots
: $\ddots$
$\sqrt{2}$
\sqrt{2}
: $\sqrt{2}$\sqrt{x^2}
: $\sqrt{x^2}$\sqrt[3]{x^2}
: $\sqrt[3]{x^2}$
$\frac{A}{B}$
\dfrac
은 큰 분수 (display), \cfrac
은 연속 분수(continued)
\frac{A}{B}
: $\frac{A}{B}$\frac{2}{3} + \frac{3}{4}
: $\frac{2}{3} + \frac{3}{4}$\frac{dy}{dx}
: $\frac{dy}{dx}$\frac{ \frac{A}{B} }{ \frac{C}{D} }
: $\frac{ \frac{A}{B} }{ \frac{C}{D} }$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
: $\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}
: $x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}$x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3}}}
: $x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3}}}$
$($
괄호 안에 들어갈 식과 괄호 길이를 맞춰주려면, 여는 괄호의 앞에 \left
, 닫는 괄호의 앞에 \right
를 써야 합니다.
(\frac{A}{B})
: $(\frac{A}{B})$\left(\frac{A}{B}\right)
: $\left(\frac{A}{B}\right)$(\frac{ \frac{A}{B} }{ \frac{C}{D} })
: $(\frac{ \frac{A}{B} }{ \frac{C}{D} })$\left( \frac{ \frac{A}{B} }{ \frac{C}{D} } \right)
: $\left( \frac{ \frac{A}{B} }{ \frac{C}{D} } \right)$[\sqrt{2}] + \left[ \sqrt{2} \right]
: $[\sqrt{2}] + \left[ \sqrt{2} \right]${e^x} \{e^x\} \left\{ e^x \right\}
: ${e^x} \{e^x\} \left\{ e^x \right\}$<\sqrt{x}> \left< \sqrt{x} \right> \langle \sqrt{x} \rangle
: $<\sqrt{x}> \left< \sqrt{x} \right> \langle \sqrt{x} \rangle$\lfloor x \rfloor \lceil x \rceil
: $\lfloor x \rfloor \lceil x \rceil$\lfloor \frac{x}{2} \rfloor \left\lfloor \frac{x}{2} \right\rfloor
: $\lfloor \frac{x}{2} \rfloor \left\lfloor \frac{x}{2} \right\rfloor$\lceil \frac{x}{2} \rceil \left\lceil \frac{x}{2} \right\rceil
: $\lceil \frac{x}{2} \rceil \left\lceil \frac{x}{2} \right\rceil$|x| \|x\|
: $|x| \|x\|$\left| \frac{x}{2} \right| \left\| \frac{x}{2} \right\|
: $\left| \frac{x}{2} \right| \left\| \frac{x}{2} \right\|$
$\sum$
-
\sum {x}
: $\sum {x}$ -
\sum_1^n {x}
$\sum_1^n {x}$ -
\sum_i {A_i}
: $\sum_i {A_i}$ -
\sum_{i=1}^{n} {i}
: $\sum_{i=1}^{n} {i}$ -
\sum_{i=1}^{\infty} {i^2}
: $\sum_{i=1}^{\infty} {i^2}$ -
\prod \coprod \bigcup \bigcap \bigvee \bigwedge
: $\prod \coprod \bigcup \bigcap \bigvee \bigwedge$
위의 6가지도 sum과 같은 방식으로 사용할 수 있습니다.
\prod_{i=1}^n {A_i}
: $\prod_{i=1}^n {A_i}$\coprod_{i=1}^n {A_i}
: $\coprod_{i=1}^n {A_i}$\bigcup_{i=1]}^n {A_i}
: $\bigcup_{i=1}^n {A_i}$\bigcap_{i=1}^n {A_i}
: $\bigcap_{i=1}^n {A_i}$\bigvee_{i=1}^n {A_i}
: $\bigvee_{i=1}^n {A_i}$\bigwedge_{i=1}^n {A_i}
: $\bigwedge_{i=1}^n {A_i}$
$\int$
\int_{a}^{b}{f(x)dx}
: $\int_{a}^{b}{f(x)dx}$\int_{D}{f(x)dx}
: $\int_{D}{f(x)dx}$\int {e^x}
: $\int {e^x}$\int_a^b f(x)~dx = \left [[F(x) \right ]_a^b = F(b) - F(a)
: $\int_a^b f(x)~dx = \left [[F(x) \right ]_a^b = F(b) - F(a)$
\int
도 \sum
과 같은 방식으로 사용할 수 있고, 아래 4가지도 \int
와 같은 방식으로 사용할 수 있습니다.
\iint \iiint \iiiint \oint
: $ \iint \iiint \iiiint \oint $
$\sin$
sin, cos, log와 같은 함수는 sin
으로 쓰면 다른 문자와 같이 기울어지고, \sin
을 이용하면 기울어지지 않습니다.
f(x)
= $f(x)$f^2(x)
= $f^2(x)$f^{n+1} \left ( \frac{\sin{x}}{x} \right)
: $f^{n+1} \left ( \frac{\sin{x}}{x} \right)$sin(x)
= $sin(x)$\sin(x)
= $\sin(x)$\sin^{2}{x}
= $\sin^{2}{x}$
$\sin {x} \cos {x} \tan {x} \csc {x} \sec {x} \cot {x}$
\sin {x} \cos {x} \tan {x} \csc {x} \sec {x} \cot {x}
$\arcsin {x} \arccos {x} \arctan {x}$
\arcsin {x} \arccos {x} \arctan {x}
$\sinh {x} \cosh {x} \tanh {x} \coth {x}$
\sinh {x} \cosh {x} \tanh {x} \coth {x}
$\log$
\log{N})
: $\log{N}$\log_2{N}
: $\log_2{N}$\lg{N}
: $\lg{N}$\lim {A_N}
: $\lim {A_N}$\lim_{x \to 0} {x^2}
: $\lim_{x \to 0} {x^2}$\min {A_N}
: $\min {A_N}$\min_{i \le N} {A_i}
: $\min_{i \le N} {A_i}$\max_{i \le N} {A_i}
: $\max_{i \le N} {A_i}$
mod
A \equiv B \pmod n
: $A \equiv B \pmod n$
$\cap$
A \cap B
: $A \cap B$A \cup B
: $A \cup B$A \uplus B
: $A \uplus B$A \sqcap B
: $A \sqcap B$A \sqcup B
: $A \sqcup B$A \wedge B
: $A \wedge B$A \vee B
: $A \vee B$
$\equiv$
A \equiv B
: $A \equiv B$A \sim B
: $A \sim B$A \simeq B
: $A \simeq B$A \approx B
: $A \approx B$A \cong B
: $A \cong B$A \nsim B
: $A \nsim B$A \ncong B
: $A \ncong B$A \propto B
: $A \propto B$A \ll B
: $A \ll B$A \gg B
: $A \gg B$
$\in$
-
x \in S
: $x \in S$ -
x \ni S
: $x \ni S$ -
x \notin S
: $x \notin S$ -
A \subset B
: $A \subset B$ -
A \supset B
: $A \supset B$ -
A \subseteq B
: $A \subseteq B$ -
A \supseteq B
: $A \supseteq B$ -
A \sqsubset B
: $A \sqsubset B$ -
A \sqsupset B
: $A \sqsupset B$ -
A \sqsubseteq B
: $A \sqsubseteq B$ -
A \sqsupseteq B
: $A \sqsupseteq B$
Matrix
$\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}$
$\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}$
$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$\begin{Bmatrix} 1 & 2 \\ 3 & 4 \end{Bmatrix}$
\begin{Bmatrix} 1 & 2 \\ 3 & 4 \end{Bmatrix}
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$
\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}
$\begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix}$
\begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix}
$\begin{eqnarray} A & = & 1 \\ B & = & 2 \end{eqnarray}$
\begin{eqnarray} A & = & 1 \\ B & = & 2 \end{eqnarray}
Cases
$$F_n = \begin{cases} 0 & \text{if }n = 0 \\ 1 & \text{if }n = 1 \\ F_{n-1} + F_{n-2} & \text{if }n > 1 \end{cases}$$
F_n = \begin{cases} 0 & \text{if }n = 0 \\ 1 & \text{if }n = 1 \\ F_{n-1} + F_{n-2} & \text{if }n > 1 \end{cases}
Align
$$f(x) = (a+b)^2 \\ = a^2 + 2ab + b^2$$
f(x) = (a+b)^2 \\ = a^2 + 2ab + b^2
$$\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}$$
$\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}
$\dot {x}$
-
\dot {x}
: $\dot {x}$ -
\ddot {x}
: $\ddot {x}$ -
\dddot {x}
: $\dddot {x}$ -
\ddddot {x}
: $\ddddot {x}$ -
\hat {x}
: $\hat {x}$ -
\check {x}
: $\check {x}$ -
\acute {x}
: $\acute {x}$ -
\grave {x}
: $\grave {x}$ -
\breve {x}
: $\breve {x}$ -
\tilde {x}
: $\tilde {x}$ -
\bar {x}
: $\bar {x}$ -
\vec {x}
: $\vec {x}$ -
\mathring {x}
: $\mathring {x}$ -
\overline {xyz}
: $\overline {xyz}$ -
\underline {xyz}
: $\underline {xyz}$ -
\overleftarrow {xyz}
: $\overleftarrow {xyz}$ -
\underleftarrow {xyz}
: $\underleftarrow {xyz}$ -
\overrightarrow {xyz}
: $\overrightarrow {xyz}$ -
\underrightarrow {xyz}
: $\underrightarrow {xyz}$ -
\overleftrightarrow {xyz}
: $\overleftrightarrow {xyz}$ -
\underleftrightarrow {xyz}
: $\underleftrightarrow {xyz}$ -
\overbrace {A_1, A_2, \ldots, A_{N-1}, A_N}
: $\overbrace {A_1, A_2, \ldots, A_{N-1}, A_N}$ -
\underbrace {A_1, A_2, \ldots, A_{N-1}, A_N}
: $\underbrace {A_1, A_2, \ldots, A_{N-1}, A_N}$ -
\widehat {A_1, A_2, \ldots, A_{N-1}, A_N}
: $\widehat {A_1, A_2, \ldots, A_{N-1}, A_N}$ -
\widetilde {A_1, A_2, \ldots, A_{N-1}, A_N}
: $\widetilde {A_1, A_2, \ldots, A_{N-1}, A_N}$ -
\xleftarrow {A_i} \xleftarrow [3]{A_i} \xrightarrow [3]{A_i} \xrightarrow {A_i}
: $\xleftarrow {A_i} \xleftarrow [3]{A_i} \xrightarrow [3]{A_i} \xrightarrow {A_i}$ -
\boxed {N^2}
: $\boxed {N^2}$
$\prec$
-
A \prec B
: $A \prec B$ -
A \succ B
: $A \succ B$ -
A \preceq B
: $A \preceq B$ -
A \succeq B
: $A \succeq B$ -
A \precsim B
: $A \precsim B$ -
A \succsim B
: $A \succsim B$ -
A \asymp B
: $A \asymp B$ -
A \parallel B
: $A \parallel B$ -
A \vdash B
: $A \vdash B$ -
A \dashv B
: $A \dashv B$ -
A \models B
: $A \models B$
$\alpha$
$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$
\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega
$\alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \varphi \chi \psi \omega$
\alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \varphi \chi \psi \omega
$\varepsilon \vartheta \varpi \varrho \varsigma \varphi$
\varepsilon \vartheta\varpi \varrho \varsigma \varphi
$\ell$
$\ell \mho \partial \forall \exists \nexists \aleph \beth$
\ell \mho \partial \forall \exists \nexists \aleph \beth
$\mathbb{R}$
-
\mathbb
: Blackboard bold -
\mathbf
: Boldface -
\mathtt
: Typewriter font -
\mathrm
: Roman font -
\mathsf
: Sans-serif font -
\mathcal
: Calligraphic -
\mathscr
: Script -
\mathfrak
: Fraktur (old German style) -
알파벳
: $A B C D E F G H I J K L M N O P Q R S T U V W X Y Z$ -
\mathbb{알파벳}
: $\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} $ -
\mathbf{알파벳}
: $\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} $ -
\mathtt{알파벳}
: $ \mathtt{A} \mathtt{B} \mathtt{C} \mathtt{D} \mathtt{E} \mathtt{F} \mathtt{G} \mathtt{H} \mathtt{I} \mathtt{J} \mathtt{K} \mathtt{L} \mathtt{M} \mathtt{N} \mathtt{O} \mathtt{P} \mathtt{Q} \mathtt{R} \mathtt{S} \mathtt{T} \mathtt{U} \mathtt{V} \mathtt{W} \mathtt{X} \mathtt{Y} \mathtt{Z} $ -
\mathrm{알파벳}
: $ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} $ -
\mathsf{알파벳}
: $ \mathsf{A} \mathsf{B} \mathsf{C} \mathsf{D} \mathsf{E} \mathsf{F} \mathsf{G} \mathsf{H} \mathsf{I} \mathsf{J} \mathsf{K} \mathsf{L} \mathsf{M} \mathsf{N} \mathsf{O} \mathsf{P} \mathsf{Q} \mathsf{R} \mathsf{S} \mathsf{T} \mathsf{U} \mathsf{V} \mathsf{W} \mathsf{X} \mathsf{Y} \mathsf{Z} $ -
\mathcal{알파벳}
: $ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} $ -
\mathscr{알파벳}
: $ \mathscr{A} \mathscr{B} \mathscr{C} \mathscr{D} \mathscr{E} \mathscr{F} \mathscr{G} \mathscr{H} \mathscr{I} \mathscr{J} \mathscr{K} \mathscr{L} \mathscr{M} \mathscr{N} \mathscr{O} \mathscr{P} \mathscr{Q} \mathscr{R} \mathscr{S} \mathscr{T} \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z} $ -
\mathfrak{알파벳}
: $ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} $ -
알파벳
: $a b c d e f g h i j k l m n o p q r s t u v w x y z$ -
\mathbb{알파벳}
: $\mathbb{a} \mathbb{b} \mathbb{c} \mathbb{d} \mathbb{e} \mathbb{f} \mathbb{g} \mathbb{h} \mathbb{i} \mathbb{j} \mathbb{k} \mathbb{l} \mathbb{m} \mathbb{n} \mathbb{o} \mathbb{p} \mathbb{q} \mathbb{r} \mathbb{s} \mathbb{t} \mathbb{u} \mathbb{v} \mathbb{w} \mathbb{x} \mathbb{y} \mathbb{z} $ -
\mathbf{알파벳}
: $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} $ -
\mathtt{알파벳}
: $ \mathtt{a} \mathtt{b} \mathtt{c} \mathtt{d} \mathtt{e} \mathtt{f} \mathtt{g} \mathtt{h} \mathtt{i} \mathtt{j} \mathtt{k} \mathtt{l} \mathtt{m} \mathtt{n} \mathtt{o} \mathtt{p} \mathtt{q} \mathtt{r} \mathtt{s} \mathtt{t} \mathtt{u} \mathtt{v} \mathtt{w} \mathtt{x} \mathtt{y} \mathtt{z} $ -
\mathrm{알파벳}
: $ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} $ -
\mathsf{알파벳}
: $ \mathsf{a} \mathsf{b} \mathsf{c} \mathsf{d} \mathsf{e} \mathsf{f} \mathsf{g} \mathsf{h} \mathsf{i} \mathsf{j} \mathsf{k} \mathsf{l} \mathsf{m} \mathsf{n} \mathsf{o} \mathsf{p} \mathsf{q} \mathsf{r} \mathsf{s} \mathsf{t} \mathsf{u} \mathsf{v} \mathsf{w} \mathsf{x} \mathsf{y} \mathsf{z} $ -
\mathcal{알파벳}
: $ \mathcal{a} \mathcal{b} \mathcal{c} \mathcal{d} \mathcal{e} \mathcal{f} \mathcal{g} \mathcal{h} \mathcal{i} \mathcal{j} \mathcal{k} \mathcal{l} \mathcal{m} \mathcal{n} \mathcal{o} \mathcal{p} \mathcal{q} \mathcal{r} \mathcal{s} \mathcal{t} \mathcal{u} \mathcal{v} \mathcal{w} \mathcal{x} \mathcal{y} \mathcal{z} $ -
\mathscr{알파벳}
: $ \mathscr{a} \mathscr{b} \mathscr{c} \mathscr{d} \mathscr{e} \mathscr{f} \mathscr{g} \mathscr{h} \mathscr{i} \mathscr{j} \mathscr{k} \mathscr{l} \mathscr{m} \mathscr{n} \mathscr{o} \mathscr{p} \mathscr{q} \mathscr{r} \mathscr{s} \mathscr{t} \mathscr{u} \mathscr{v} \mathscr{w} \mathscr{x} \mathscr{y} \mathscr{z} $ -
\mathfrak{알파벳}
: $ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} $
Space
A B
: $A B$A B
: $A B$A \, B
: $A \, B$A \; B
: $A \; B$A \quad B
: $A \quad B$A \qquad B
: $A \qquad B$
Text
\{x\in s\mid x is even number\}
: $\{x\in s\mid x is even number\}$\{x\in s\mid x\text{ is even number}\}
: $\{x\in s\mid x\text{ is even number}\}$
$ \$ $
\\
는 줄 바꿈이기 때문에, \
를 입력하려면 \backslash
를 사용해야 합니다.
\$
: $ \$ $\backslash
: $\backslash$\_
: $ \_ $
$\rightarrow$
$\to \leftarrow \rightarrow \uparrow \downarrow \leftrightarrow \updownarrow$
\to \leftarrow \rightarrow \uparrow \downarrow \leftrightarrow \updownarrow
$\Leftarrow \Rightarrow \Uparrow \Downarrow \Leftrightarrow \Updownarrow$
\Leftarrow \Rightarrow \Uparrow \Downarrow \Leftrightarrow \Updownarrow
$\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow$
\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow
$\nearrow \nwarrow \searrow \swarrow$
\nearrow \nwarrow \searrow \swarrow
$\nleftarrow \nrightarrow \nleftrightarrow \nLeftarrow \nRightarrow \nLeftrightarrow$
\nleftarrow \nrightarrow \nleftrightarrow \nLeftarrow \nRightarrow \nLeftrightarrow
$\dashleftarrow \dashrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow$
\dashleftarrow \dashrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow
$\leftharpoonup \leftharpoondown \rightharpoonup \rightharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons$
\leftharpoonup \leftharpoondown \rightharpoonup \rightharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons
$\leftleftarrows \rightrightarrows \upuparrows \downdownarrows \leftrightarrows \rightleftarrows$
\leftleftarrows \rightrightarrows \upuparrows \downdownarrows \leftrightarrows \rightleftarrows
$\looparrowleft \looparrowright \leftarrowtail \rightarrowtail \Lsh \Rsh \Lleftarrow \Rrightarrow \twoheadleftarrow \twoheadrightarrow$
\looparrowleft \looparrowright \leftarrowtail \rightarrowtail \Lsh \Rsh \Lleftarrow \Rrightarrow \twoheadleftarrow \twoheadrightarrow
$\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \multimap \leftrightsquigarrow \leadsto \rightsquigarrow$
\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \multimap \leftrightsquigarrow \leadsto \rightsquigarrow
$\llless$
A \llless B
: $A \llless B$A \gggtr B
: $A \gggtr B$A \leqq B
: $A \leqq B$A \geqq B
: $A \geqq B$A \lesssim B
: $A \lesssim B$A \gtrsim B
: $A \gtrsim B$A \lessdot B
: $A \lessdot B$A \gtrdot B
: $A \gtrdot B$A \lessgtr B
: $A \lessgtr B$A \gtrless B
: $A \gtrless B$A \lesseqgtr B
: $A \lesseqgtr B$A \gtreqless B
: $A \gtreqless B$A \doteqdot B
: $A \doteqdot B$A \fallingdotseq B
: $A \fallingdotseq B$A \risingdotseq B
: $A \risingdotseq B$
$\infty $
$\infty \surd \emptyset \nabla \blacksquare \neg \angle \measuredangle \sphericalangle \bot \parallel \prime$
\infty \surd \emptyset \nabla \blacksquare \neg \angle \measuredangle \sphericalangle \bot \parallel \prime
$\blacksquare \triangle\blacktriangle \triangledown \blacktriangledown \Box \Diamond \blacklozenge \bigstar$
\blacksquare \triangle \blacktriangle \triangledown \blacktriangledown \Box \Diamond \blacklozenge \bigstar
$\top \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \dagger \ddagger$
\top \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \dagger \ddagger
$\S \hslash \circledS \diagup \diagdown \backprime$
\S \hslash \circledS \diagup \diagdown \backprime
$\bigodot \bigotimes \bigoplus \biguplus$
\bigodot \bigotimes \bigoplus \biguplus
$\boxminus \boxtimes \boxdot \boxplus \divideontimes $
\boxminus \boxtimes \boxdot \boxplus \divideontimes
$\ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \intercal $
\ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \intercal
$\circleddash \oplus \ominus \otimes \oslash \odot \circledast \circledcirc $
\circleddash \oplus \ominus \otimes \oslash \odot \circledast \circledcirc
$\lhd \rhd \unlhd \unrhd \backsim $
\lhd \rhd \unlhd \unrhd \backsim
$\Vdash \Vvdash \eqcirc \circeq \bumpeq \between \pitchfork \doteq $
\Vdash \Vvdash \eqcirc \circeq \bumpeq \between \pitchfork \doteq
$\varsubsetneqq \varsupsetneqq \lneq \gneq \lneqq \gneqq \lnsim \gnsim \lnapprox \gnapprox $
\varsubsetneqq \varsupsetneqq \lneq \gneq \lneqq \gneqq \lnsim \gnsim \lnapprox \gnapprox
$\nsim \precneqq \succneqq \precnsim \succnsim \precnapprox \succnapprox $
\nsim \precneqq \succneqq \precnsim \succnsim \precnapprox \succnapprox
$\subsetneq \supsetneq \subsetneqq \supsetneqq \nprec \nsucc \npreceq \nsucceq \ncong $
\subsetneq \supsetneq \subsetneqq \supsetneqq \nprec \nsucc \npreceq \nsucceq \ncong
$\nvdash \nVdash \nVDash \ntriangleleft \ntriangleright \ntrianglelefteq \ntrianglerighteq \nmid \nparallel \nsubseteq \nsupseteq $
\nvdash \nVdash \nVDash \ntriangleleft \ntriangleright \ntrianglelefteq \ntrianglerighteq \nmid \nparallel \nsubseteq \nsupseteq
댓글 댓글 쓰기