Mathjax

Mathjax를 사용하려면, $$ 또는 $$$$안에 수식을 넣어야 합니다.

$는 inline Math로 문장 사이에 넣을 때, $$는 Display Math로 한 줄을 모두 차지하게 됩니다.

1부터 N까지 합: $\sum_{i=1}^{n} {i^2} = \frac{(2n+1)(n+1)n}{6}$

$$\sum_{i=1}^{n} {i^2} = \frac{(2n+1)(n+1)n}{6}$$

블로그를 제외한 온라인 저지 다른 곳에서는 $ 대신 \(\)를 , $$ 대신 \[\]를 사용해야 합니다.

$+$

  • A + B = C: $A + B = C$
  • A - B = C: $A - B = C$
  • A * B = C: $A * B = C$
  • A \times B = C: $A \times B = C$
  • A / B = C: $A / B = C$
  • A \div B = C: $A \div B = C$
  • A \pm B = C: $A \pm B = C$
  • A \mp B = C: $A \mp B = C$
  • A \ast B = C: $A \ast B = C$
  • A \circ B = C: $A \circ B = C$
  • A \bullet B = C: $A \bullet B = C$
  • A \cdot B = C: $A \cdot B = C$
  • A \oplus B = C: $A \oplus B = C$
  • A \ominus B = C: $A \ominus B = C$
  • A \otimes B = C: $A \otimes B = C$
  • A \odot B = C: $A \odot B = C$
  • A \circledast B = C: $A \circledast B = C$
  • A \circledcirc B = C: $A \circledcirc B = C$
  • A \star B = C: $A \star B = C$
  • A \diamond B = C: $A \diamond B = C$

$e^x$

  • e^x: $e^x$
  • a_i: $a_i$
  • a_i-1: $a_i-1$
  • a_{i-1}: $a_{i-1}$
  • x^2 + 2x + 1: $x^2 + 2x + 1$
  • a_i^2: $a_i^2$
  • a_{i-1}^2+3: $a_{i-1}^2+3$
  • a_{i-1}^{2+3}: $a_{i-1}^{2+3}$
  • a^b^c: $a^b^c$
  • {a^b}^c: ${a^b}^c$
  • a^{b^c}: $a^{b^c}$

a^b^c(a^b)^c인지 a^(b^c) 인지 알 수가 없기 때문에 렌더링을 하지 않습니다.

$\le$

  • A \lt B: $A \lt B$
  • A < B: $A < B$
  • A \le B: $A \le B$
  • A ≤ B: $A ≤ B$
  • A \ge B: $A \ge B$
  • A ≥ B: $A ≥ B$
  • A \gt B: $A \gt B$
  • A > B: $A > B$
  • A = B: $A = B$
  • A \ne B: $A \ne B$
  • A ≠ B: $A ≠ B$
  • A \nless B: $A \nless B$
  • A \nleq B: $A \nleq B$
  • A \ngtr B: $A \ngtr B$
  • A \ngeq B: $A \ngeq B$

연산자 앞에 \not을 붙여서 \le $\le$\not\le $\not\le$ 로 바꿀 수 있습니다.

$\ldots$

  • A_1, A_2, \ldots, A_{N-1}, A_N: $A_1, A_2, \ldots, A_{N-1}, A_N$
  • A_1 + A_2 + \cdots + A_{N-1} + A_N: $A_1 + A_2 + \cdots + A_{N-1} + A_N$
  • \therefore: $\therefore$
  • \because: $\because$
  • \vdots: $\vdots$
  • \ddots: $\ddots$

$\sqrt{2}$

  • \sqrt{2}: $\sqrt{2}$
  • \sqrt{x^2}: $\sqrt{x^2}$
  • \sqrt[3]{x^2}: $\sqrt[3]{x^2}$

$\frac{A}{B}$

\dfrac은 큰 분수 (display), \cfrac은 연속 분수(continued)

  • \frac{A}{B}: $\frac{A}{B}$
  • \frac{2}{3} + \frac{3}{4}: $\frac{2}{3} + \frac{3}{4}$
  • \frac{dy}{dx}: $\frac{dy}{dx}$
  • \frac{ \frac{A}{B} }{ \frac{C}{D} }: $\frac{ \frac{A}{B} }{ \frac{C}{D} }$
  • \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
  • \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}: $\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
  • x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}: $x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}$
  • x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3}}}: $x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3}}}$

$($

괄호 안에 들어갈 식과 괄호 길이를 맞춰주려면, 여는 괄호의 앞에 \left, 닫는 괄호의 앞에 \right를 써야 합니다.

  • (\frac{A}{B}): $(\frac{A}{B})$
  • \left(\frac{A}{B}\right): $\left(\frac{A}{B}\right)$
  • (\frac{ \frac{A}{B} }{ \frac{C}{D} }): $(\frac{ \frac{A}{B} }{ \frac{C}{D} })$
  • \left( \frac{ \frac{A}{B} }{ \frac{C}{D} } \right): $\left( \frac{ \frac{A}{B} }{ \frac{C}{D} } \right)$
  • [\sqrt{2}] + \left[ \sqrt{2} \right]: $[\sqrt{2}] + \left[ \sqrt{2} \right]$
  • {e^x} \{e^x\} \left\{ e^x \right\}: ${e^x} \{e^x\} \left\{ e^x \right\}$
  • <\sqrt{x}> \left< \sqrt{x} \right> \langle \sqrt{x} \rangle : $<\sqrt{x}> \left< \sqrt{x} \right> \langle \sqrt{x} \rangle$
  • \lfloor x \rfloor \lceil x \rceil: $\lfloor x \rfloor \lceil x \rceil$
  • \lfloor \frac{x}{2} \rfloor \left\lfloor \frac{x}{2} \right\rfloor: $\lfloor \frac{x}{2} \rfloor \left\lfloor \frac{x}{2} \right\rfloor$
  • \lceil \frac{x}{2} \rceil \left\lceil \frac{x}{2} \right\rceil: $\lceil \frac{x}{2} \rceil \left\lceil \frac{x}{2} \right\rceil$
  • |x| \|x\|: $|x| \|x\|$
  • \left| \frac{x}{2} \right| \left\| \frac{x}{2} \right\|: $\left| \frac{x}{2} \right| \left\| \frac{x}{2} \right\|$

$\sum$

  • \sum {x}: $\sum {x}$

  • \sum_1^n {x} $\sum_1^n {x}$

  • \sum_i {A_i}: $\sum_i {A_i}$

  • \sum_{i=1}^{n} {i}: $\sum_{i=1}^{n} {i}$

  • \sum_{i=1}^{\infty} {i^2}: $\sum_{i=1}^{\infty} {i^2}$

  • \prod \coprod \bigcup \bigcap \bigvee \bigwedge: $\prod \coprod \bigcup \bigcap \bigvee \bigwedge$

위의 6가지도 sum과 같은 방식으로 사용할 수 있습니다.

  • \prod_{i=1}^n {A_i}: $\prod_{i=1}^n {A_i}$
  • \coprod_{i=1}^n {A_i}: $\coprod_{i=1}^n {A_i}$
  • \bigcup_{i=1]}^n {A_i}: $\bigcup_{i=1}^n {A_i}$
  • \bigcap_{i=1}^n {A_i}: $\bigcap_{i=1}^n {A_i}$
  • \bigvee_{i=1}^n {A_i}: $\bigvee_{i=1}^n {A_i}$
  • \bigwedge_{i=1}^n {A_i}: $\bigwedge_{i=1}^n {A_i}$

$\int$

  • \int_{a}^{b}{f(x)dx}: $\int_{a}^{b}{f(x)dx}$
  • \int_{D}{f(x)dx}: $\int_{D}{f(x)dx}$
  • \int {e^x}: $\int {e^x}$
  • \int_a^b f(x)~dx = \left [[F(x) \right ]_a^b = F(b) - F(a): $\int_a^b f(x)~dx = \left [[F(x) \right ]_a^b = F(b) - F(a)$

\int\sum과 같은 방식으로 사용할 수 있고, 아래 4가지도 \int와 같은 방식으로 사용할 수 있습니다.

  • \iint \iiint \iiiint \oint: $ \iint \iiint \iiiint \oint $

$\sin$

sin, cos, log와 같은 함수는 sin으로 쓰면 다른 문자와 같이 기울어지고, \sin을 이용하면 기울어지지 않습니다.

  • f(x) = $f(x)$
  • f^2(x) = $f^2(x)$
  • f^{n+1} \left ( \frac{\sin{x}}{x} \right): $f^{n+1} \left ( \frac{\sin{x}}{x} \right)$
  • sin(x) = $sin(x)$
  • \sin(x) = $\sin(x)$
  • \sin^{2}{x} = $\sin^{2}{x}$

$\sin {x} \cos {x} \tan {x} \csc {x} \sec {x} \cot {x}$

\sin {x} \cos {x} \tan {x} \csc {x} \sec {x} \cot {x}

$\arcsin {x} \arccos {x} \arctan {x}$

\arcsin {x} \arccos {x} \arctan {x}

$\sinh {x} \cosh {x} \tanh {x} \coth {x}$

\sinh {x} \cosh {x} \tanh {x} \coth {x}

$\log$

  • \log{N}): $\log{N}$
  • \log_2{N}: $\log_2{N}$
  • \lg{N}: $\lg{N}$
  • \lim {A_N}: $\lim {A_N}$
  • \lim_{x \to 0} {x^2}: $\lim_{x \to 0} {x^2}$
  • \min {A_N}: $\min {A_N}$
  • \min_{i \le N} {A_i}: $\min_{i \le N} {A_i}$
  • \max_{i \le N} {A_i}: $\max_{i \le N} {A_i}$

mod

  • A \equiv B \pmod n: $A \equiv B \pmod n$

$\cap$

  • A \cap B: $A \cap B$
  • A \cup B: $A \cup B$
  • A \uplus B: $A \uplus B$
  • A \sqcap B: $A \sqcap B$
  • A \sqcup B: $A \sqcup B$
  • A \wedge B: $A \wedge B$
  • A \vee B: $A \vee B$

$\equiv$

  • A \equiv B: $A \equiv B$
  • A \sim B: $A \sim B$
  • A \simeq B: $A \simeq B$
  • A \approx B: $A \approx B$
  • A \cong B: $A \cong B$
  • A \nsim B: $A \nsim B$
  • A \ncong B: $A \ncong B$
  • A \propto B: $A \propto B$
  • A \ll B: $A \ll B$
  • A \gg B: $A \gg B$

$\in$

  • x \in S: $x \in S$

  • x \ni S: $x \ni S$

  • x \notin S: $x \notin S$

  • A \subset B: $A \subset B$

  • A \supset B: $A \supset B$

  • A \subseteq B: $A \subseteq B$

  • A \supseteq B: $A \supseteq B$

  • A \sqsubset B: $A \sqsubset B$

  • A \sqsupset B: $A \sqsupset B$

  • A \sqsubseteq B: $A \sqsubseteq B$

  • A \sqsupseteq B: $A \sqsupseteq B$

Matrix

$\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}$

$\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}$

$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}

$\begin{Bmatrix} 1 & 2 \\ 3 & 4 \end{Bmatrix}$

\begin{Bmatrix} 1 & 2 \\ 3 & 4 \end{Bmatrix}

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}

$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}

$\begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix}$

\begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix}

$\begin{eqnarray} A & = & 1 \\ B & = & 2 \end{eqnarray}$

\begin{eqnarray} A & = & 1 \\ B & = & 2 \end{eqnarray}

Cases

$$F_n = \begin{cases} 0 & \text{if }n = 0 \\ 1 & \text{if }n = 1 \\ F_{n-1} + F_{n-2} & \text{if }n > 1 \end{cases}$$

F_n =  \begin{cases} 0  & \text{if }n = 0 \\ 1   & \text{if }n = 1 \\ F_{n-1} + F_{n-2}   & \text{if }n > 1 \end{cases}

Align

$$f(x) = (a+b)^2 \\ = a^2 + 2ab + b^2$$

f(x) = (a+b)^2 \\ = a^2 + 2ab + b^2

$$\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}$$

$\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}

$\dot {x}$

  • \dot {x}: $\dot {x}$

  • \ddot {x}: $\ddot {x}$

  • \dddot {x}: $\dddot {x}$

  • \ddddot {x}: $\ddddot {x}$

  • \hat {x}: $\hat {x}$

  • \check {x}: $\check {x}$

  • \acute {x}: $\acute {x}$

  • \grave {x}: $\grave {x}$

  • \breve {x}: $\breve {x}$

  • \tilde {x}: $\tilde {x}$

  • \bar {x}: $\bar {x}$

  • \vec {x}: $\vec {x}$

  • \mathring {x}: $\mathring {x}$

  • \overline {xyz}: $\overline {xyz}$

  • \underline {xyz}: $\underline {xyz}$

  • \overleftarrow {xyz}: $\overleftarrow {xyz}$

  • \underleftarrow {xyz}: $\underleftarrow {xyz}$

  • \overrightarrow {xyz}: $\overrightarrow {xyz}$

  • \underrightarrow {xyz}: $\underrightarrow {xyz}$

  • \overleftrightarrow {xyz}: $\overleftrightarrow {xyz}$

  • \underleftrightarrow {xyz}: $\underleftrightarrow {xyz}$

  • \overbrace {A_1, A_2, \ldots, A_{N-1}, A_N}: $\overbrace {A_1, A_2, \ldots, A_{N-1}, A_N}$

  • \underbrace {A_1, A_2, \ldots, A_{N-1}, A_N}: $\underbrace {A_1, A_2, \ldots, A_{N-1}, A_N}$

  • \widehat {A_1, A_2, \ldots, A_{N-1}, A_N}: $\widehat {A_1, A_2, \ldots, A_{N-1}, A_N}$

  • \widetilde {A_1, A_2, \ldots, A_{N-1}, A_N}: $\widetilde {A_1, A_2, \ldots, A_{N-1}, A_N}$

  • \xleftarrow {A_i} \xleftarrow [3]{A_i} \xrightarrow [3]{A_i} \xrightarrow {A_i}: $\xleftarrow {A_i} \xleftarrow [3]{A_i} \xrightarrow [3]{A_i} \xrightarrow {A_i}$

  • \boxed {N^2}: $\boxed {N^2}$

$\prec$

  • A \prec B: $A \prec B$

  • A \succ B: $A \succ B$

  • A \preceq B: $A \preceq B$

  • A \succeq B: $A \succeq B$

  • A \precsim B: $A \precsim B$

  • A \succsim B: $A \succsim B$

  • A \asymp B: $A \asymp B$

  • A \parallel B: $A \parallel B$

  • A \vdash B: $A \vdash B$

  • A \dashv B: $A \dashv B$

  • A \models B: $A \models B$

$\alpha$

$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$

\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega

$\alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \varphi \chi \psi \omega$

\alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \varphi \chi \psi \omega

$\varepsilon \vartheta \varpi \varrho \varsigma \varphi$

\varepsilon \vartheta\varpi \varrho \varsigma \varphi 

$\ell$

$\ell \mho \partial \forall \exists \nexists \aleph \beth$

\ell \mho \partial \forall \exists \nexists \aleph \beth 

$\mathbb{R}$

  • \mathbb: Blackboard bold

  • \mathbf: Boldface

  • \mathtt: Typewriter font

  • \mathrm: Roman font

  • \mathsf: Sans-serif font

  • \mathcal: Calligraphic

  • \mathscr: Script

  • \mathfrak: Fraktur (old German style)

  • 알파벳: $A B C D E F G H I J K L M N O P Q R S T U V W X Y Z$

  • \mathbb{알파벳}: $\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} $

  • \mathbf{알파벳}: $\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} $

  • \mathtt{알파벳}: $ \mathtt{A} \mathtt{B} \mathtt{C} \mathtt{D} \mathtt{E} \mathtt{F} \mathtt{G} \mathtt{H} \mathtt{I} \mathtt{J} \mathtt{K} \mathtt{L} \mathtt{M} \mathtt{N} \mathtt{O} \mathtt{P} \mathtt{Q} \mathtt{R} \mathtt{S} \mathtt{T} \mathtt{U} \mathtt{V} \mathtt{W} \mathtt{X} \mathtt{Y} \mathtt{Z} $

  • \mathrm{알파벳}: $ \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} $

  • \mathsf{알파벳}: $ \mathsf{A} \mathsf{B} \mathsf{C} \mathsf{D} \mathsf{E} \mathsf{F} \mathsf{G} \mathsf{H} \mathsf{I} \mathsf{J} \mathsf{K} \mathsf{L} \mathsf{M} \mathsf{N} \mathsf{O} \mathsf{P} \mathsf{Q} \mathsf{R} \mathsf{S} \mathsf{T} \mathsf{U} \mathsf{V} \mathsf{W} \mathsf{X} \mathsf{Y} \mathsf{Z} $

  • \mathcal{알파벳}: $ \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} $

  • \mathscr{알파벳}: $ \mathscr{A} \mathscr{B} \mathscr{C} \mathscr{D} \mathscr{E} \mathscr{F} \mathscr{G} \mathscr{H} \mathscr{I} \mathscr{J} \mathscr{K} \mathscr{L} \mathscr{M} \mathscr{N} \mathscr{O} \mathscr{P} \mathscr{Q} \mathscr{R} \mathscr{S} \mathscr{T} \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z} $

  • \mathfrak{알파벳}: $ \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} $

  • 알파벳: $a b c d e f g h i j k l m n o p q r s t u v w x y z$

  • \mathbb{알파벳}: $\mathbb{a} \mathbb{b} \mathbb{c} \mathbb{d} \mathbb{e} \mathbb{f} \mathbb{g} \mathbb{h} \mathbb{i} \mathbb{j} \mathbb{k} \mathbb{l} \mathbb{m} \mathbb{n} \mathbb{o} \mathbb{p} \mathbb{q} \mathbb{r} \mathbb{s} \mathbb{t} \mathbb{u} \mathbb{v} \mathbb{w} \mathbb{x} \mathbb{y} \mathbb{z} $

  • \mathbf{알파벳}: $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} $

  • \mathtt{알파벳}: $ \mathtt{a} \mathtt{b} \mathtt{c} \mathtt{d} \mathtt{e} \mathtt{f} \mathtt{g} \mathtt{h} \mathtt{i} \mathtt{j} \mathtt{k} \mathtt{l} \mathtt{m} \mathtt{n} \mathtt{o} \mathtt{p} \mathtt{q} \mathtt{r} \mathtt{s} \mathtt{t} \mathtt{u} \mathtt{v} \mathtt{w} \mathtt{x} \mathtt{y} \mathtt{z} $

  • \mathrm{알파벳}: $ \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} $

  • \mathsf{알파벳}: $ \mathsf{a} \mathsf{b} \mathsf{c} \mathsf{d} \mathsf{e} \mathsf{f} \mathsf{g} \mathsf{h} \mathsf{i} \mathsf{j} \mathsf{k} \mathsf{l} \mathsf{m} \mathsf{n} \mathsf{o} \mathsf{p} \mathsf{q} \mathsf{r} \mathsf{s} \mathsf{t} \mathsf{u} \mathsf{v} \mathsf{w} \mathsf{x} \mathsf{y} \mathsf{z} $

  • \mathcal{알파벳}: $ \mathcal{a} \mathcal{b} \mathcal{c} \mathcal{d} \mathcal{e} \mathcal{f} \mathcal{g} \mathcal{h} \mathcal{i} \mathcal{j} \mathcal{k} \mathcal{l} \mathcal{m} \mathcal{n} \mathcal{o} \mathcal{p} \mathcal{q} \mathcal{r} \mathcal{s} \mathcal{t} \mathcal{u} \mathcal{v} \mathcal{w} \mathcal{x} \mathcal{y} \mathcal{z} $

  • \mathscr{알파벳}: $ \mathscr{a} \mathscr{b} \mathscr{c} \mathscr{d} \mathscr{e} \mathscr{f} \mathscr{g} \mathscr{h} \mathscr{i} \mathscr{j} \mathscr{k} \mathscr{l} \mathscr{m} \mathscr{n} \mathscr{o} \mathscr{p} \mathscr{q} \mathscr{r} \mathscr{s} \mathscr{t} \mathscr{u} \mathscr{v} \mathscr{w} \mathscr{x} \mathscr{y} \mathscr{z} $

  • \mathfrak{알파벳}: $ \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} $

Space

  • A B: $A B$
  • A B: $A B$
  • A \, B: $A \, B$
  • A \; B: $A \; B$
  • A \quad B: $A \quad B$
  • A \qquad B: $A \qquad B$

Text

  • \{x\in s\mid x is even number\}: $\{x\in s\mid x is even number\}$
  • \{x\in s\mid x\text{ is even number}\}: $\{x\in s\mid x\text{ is even number}\}$

$ \$ $

\\는 줄 바꿈이기 때문에, \를 입력하려면 \backslash를 사용해야 합니다.

  • \$: $ \$ $
  • \backslash: $\backslash$
  • \_: $ \_ $

$\rightarrow$

$\to \leftarrow \rightarrow \uparrow \downarrow \leftrightarrow \updownarrow$

\to \leftarrow \rightarrow \uparrow \downarrow \leftrightarrow \updownarrow

$\Leftarrow \Rightarrow \Uparrow \Downarrow \Leftrightarrow \Updownarrow$

\Leftarrow \Rightarrow \Uparrow \Downarrow \Leftrightarrow \Updownarrow

$\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow$

\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow

$\nearrow \nwarrow \searrow \swarrow$

\nearrow \nwarrow \searrow \swarrow 

$\nleftarrow \nrightarrow \nleftrightarrow \nLeftarrow \nRightarrow \nLeftrightarrow$

\nleftarrow \nrightarrow \nleftrightarrow \nLeftarrow \nRightarrow \nLeftrightarrow

$\dashleftarrow \dashrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow$

\dashleftarrow \dashrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow

$\leftharpoonup \leftharpoondown \rightharpoonup \rightharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons$

\leftharpoonup \leftharpoondown \rightharpoonup \rightharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons

$\leftleftarrows \rightrightarrows \upuparrows \downdownarrows \leftrightarrows \rightleftarrows$

\leftleftarrows \rightrightarrows \upuparrows \downdownarrows \leftrightarrows \rightleftarrows 

$\looparrowleft \looparrowright \leftarrowtail \rightarrowtail \Lsh \Rsh \Lleftarrow \Rrightarrow \twoheadleftarrow \twoheadrightarrow$

\looparrowleft \looparrowright \leftarrowtail \rightarrowtail \Lsh \Rsh \Lleftarrow \Rrightarrow \twoheadleftarrow \twoheadrightarrow

$\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \multimap \leftrightsquigarrow \leadsto \rightsquigarrow$

\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \multimap \leftrightsquigarrow  \leadsto  \rightsquigarrow 

$\llless$

  • A \llless B: $A \llless B$
  • A \gggtr B: $A \gggtr B$
  • A \leqq B: $A \leqq B$
  • A \geqq B: $A \geqq B$
  • A \lesssim B: $A \lesssim B$
  • A \gtrsim B: $A \gtrsim B$
  • A \lessdot B: $A \lessdot B$
  • A \gtrdot B: $A \gtrdot B$
  • A \lessgtr B: $A \lessgtr B$
  • A \gtrless B: $A \gtrless B$
  • A \lesseqgtr B: $A \lesseqgtr B$
  • A \gtreqless B: $A \gtreqless B$
  • A \doteqdot B: $A \doteqdot B$
  • A \fallingdotseq B: $A \fallingdotseq B$
  • A \risingdotseq B: $A \risingdotseq B$

$\infty $

$\infty \surd \emptyset \nabla \blacksquare \neg \angle \measuredangle \sphericalangle \bot \parallel \prime$

\infty \surd \emptyset \nabla \blacksquare \neg \angle \measuredangle \sphericalangle \bot \parallel \prime

$\blacksquare \triangle\blacktriangle \triangledown \blacktriangledown \Box \Diamond \blacklozenge \bigstar$

\blacksquare \triangle \blacktriangle \triangledown \blacktriangledown \Box \Diamond \blacklozenge \bigstar

$\top \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \dagger \ddagger$

 \top \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \dagger \ddagger

$\S \hslash \circledS \diagup \diagdown \backprime$

\S  \hslash \circledS  \diagup \diagdown \backprime

$\bigodot \bigotimes \bigoplus \biguplus$

\bigodot \bigotimes \bigoplus \biguplus 

$\boxminus \boxtimes \boxdot \boxplus \divideontimes $

\boxminus \boxtimes \boxdot \boxplus \divideontimes 

$\ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \intercal $

\ltimes \rtimes \leftthreetimes \rightthreetimes \curlywedge \curlyvee \intercal 

$\circleddash \oplus \ominus \otimes \oslash \odot \circledast \circledcirc $

\circleddash \oplus \ominus \otimes \oslash \odot \circledast \circledcirc 

$\lhd \rhd \unlhd \unrhd \backsim $

\lhd \rhd \unlhd \unrhd \backsim 

$\Vdash \Vvdash \eqcirc \circeq \bumpeq \between \pitchfork \doteq $

\Vdash \Vvdash \eqcirc \circeq \bumpeq \between \pitchfork \doteq 

$\varsubsetneqq \varsupsetneqq \lneq \gneq \lneqq \gneqq \lnsim \gnsim \lnapprox \gnapprox $

\varsubsetneqq \varsupsetneqq \lneq \gneq \lneqq \gneqq \lnsim \gnsim \lnapprox \gnapprox 

$\nsim \precneqq \succneqq \precnsim \succnsim \precnapprox \succnapprox $

\nsim \precneqq \succneqq \precnsim \succnsim \precnapprox \succnapprox 

$\subsetneq \supsetneq \subsetneqq \supsetneqq \nprec \nsucc \npreceq \nsucceq \ncong $

\subsetneq \supsetneq \subsetneqq \supsetneqq \nprec \nsucc \npreceq \nsucceq \ncong 

$\nvdash \nVdash \nVDash \ntriangleleft \ntriangleright \ntrianglelefteq \ntrianglerighteq \nmid \nparallel \nsubseteq \nsupseteq $

\nvdash \nVdash \nVDash \ntriangleleft \ntriangleright \ntrianglelefteq \ntrianglerighteq \nmid \nparallel \nsubseteq \nsupseteq 

댓글 댓글 쓰기