시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
2 초 128 MB 299 101 82 47.953%

문제

자연수 N이 주어지면, 자연수를 유지하면서 N을 2로 몇 번까지 나눌 수 있는지를 생각해 볼 수 있다. 즉, N의 모든 약수 중 2의 거듭제곱 꼴이면서 가장 큰 약수를 생각하는 것이다. 예를 들어 15의 경우는 2로 한 번도 나눌 수 없으므로 2^0 = 1이 해당되고, 40의 경우는 2로 세 번까지 나눌 수 있으므로 2^3 = 8이 해당된다. 이러한 약수를 함수값으로 가지는 함수 f(x)를 정의하자. 즉, f(15) = 1이고, f(40) = 8이다.

두 자연수 A, B(A≤B)가 주어지면, A 이상 B 이하의 모든 자연수에 대해서, 그 자연수의 모든 약수 중 2의 거듭제곱 꼴이면서 가장 큰 약수들의 총 합을 구하는 프로그램을 작성하시오. 즉 아래와 같은 수식의 값을 구해야 한다.

f(A) + f(A+1) + ... + f(B-1) + f(B)

입력

첫째 줄에 자연수 A와 B가 빈 칸을 사이에 두고 주어진다. (1≤A≤B≤10^15)

출력

첫째 줄에 구하고자 하는 수를 출력한다.

예제 입력

176 177

예제 출력

17

예제 입력 2

5 9

예제 출력 2

13

예제 입력 3

25 28

예제 출력 3

8

힌트