시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
5 초 (추가 시간 없음) 1024 MB 149 26 17 29.825%

문제

주의! 이 문제는 NP-hard로 밝혀졌습니다. 하지만 NP-hard 문제를 출제하면 안 된다는 규정이 없었기 때문에 그냥 두기로 했습니다.

정점 n개, 간선 m개로 이루어진 양방향 그래프가 있다. 정점은 1부터 n까지, 간선은 1부터 m까지 번호가 메겨져 있으며 i번 간선의 가중치는 wi이다. (1 ≤ i ≤ m) 이때 자연수 k에 대해서, 1번 정점에서 시작해서 n번 정점에서 끝나는 간선 k개로 이루어진 최단 단순 경로의 길이를 구하여라.

단순 경로란 같은 정점을 두 번 지나지 않는 경로를 의미하며, 경로의 길이는 해당 경로를 구성하는 간선들의 가중치 합을 의미한다.

입력

첫째 줄에 세 정수 n, m, k가 공백으로 구분되어 주어진다.

다음 m개의 줄 중 i번째 줄에는 세 정수 xi, yi, wi가 공백으로 구분되어 주어진다. 이는 i번 간선이 xi번 정점과 yi번 정점을 잇는 가중치 wi의 간선이라는 것을 의미한다.

루프나 다중간선은 주어지지 않는다.

출력

1번 정점에서 시작해서 n번 정점에서 끝나는 간선 k개로 이루어진 최단 단순 경로의 길이를 출력하라. 단, 그러한 경로가 없다면 -1을 출력하라.

제한

  • 2 ≤ n < 106
  • 1 ≤ m, k < 106
  • 1 ≤ xi, yi ≤ n
  • xiyi (1 ≤ in)
  • ij ⇒ {xi, yi} ≠ {xjyj} (1 ≤ i, jn)
  • 1 ≤ wi ≤ 108

서브태스크 1 (19점)

이 서브태스크는 다음의 조건을 만족한다.:

  • min(n, m, k) ≤ 3

서브태스크 2 (27점)

이 서브태스크는 다음의 조건을 만족한다.:

  • min(n, m, k) ≤ 4

서브태스크 3 (54점)

이 서브태스크는 다음의 조건을 만족한다.:

  • min(n, m, k) ≤ 5

예제 입력 1

6 6 3
1 2 3
2 3 1
3 6 4
1 4 1
4 5 5
5 6 9

예제 출력 1

8
W3sicHJvYmxlbV9pZCI6IjE1Nzc3IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiWHRyZW1lIE5QLWhhcmQgUHJvYmxlbT8hIiwiZGVzY3JpcHRpb24iOiI8cD48ZW0+XHVjOGZjXHVjNzU4ISBcdWM3NzQgXHViYjM4XHVjODFjXHViMjk0IE5QLWhhcmRcdWI4NWMgXHViYzFkXHVkNjAwXHVjODRjXHVjMmI1XHViMmM4XHViMmU0LiBcdWQ1NThcdWM5YzBcdWI5Y2MgTlAtaGFyZCBcdWJiMzhcdWM4MWNcdWI5N2MgXHVjZDljXHVjODFjXHVkNTU4XHViYTc0IFx1YzU0OCBcdWI0MWNcdWIyZTRcdWIyOTQgXHVhZGRjXHVjODE1XHVjNzc0IFx1YzVjNlx1YzVjOFx1YWUzMCBcdWI1NGNcdWJiMzhcdWM1ZDAgXHVhZGY4XHViMGU1IFx1YjQ1MFx1YWUzMFx1Yjg1YyBcdWQ1ODhcdWMyYjVcdWIyYzhcdWIyZTQuPFwvZW0+PFwvcD5cclxuXHJcbjxwPlx1YzgxNVx1YzgxMCA8ZW0+bjxcL2VtPlx1YWMxYywgXHVhYzA0XHVjMTIwIDxlbT5tPFwvZW0+XHVhYzFjXHViODVjIFx1Yzc3NFx1YjhlOFx1YzViNFx1YzljNCBcdWM1OTFcdWJjMjlcdWQ1YTUgXHVhZGY4XHViNzk4XHVkNTA0XHVhYzAwIFx1Yzc4OFx1YjJlNC4gXHVjODE1XHVjODEwXHVjNzQwIDFcdWJkODBcdWQxMzAgPGVtPm48XC9lbT5cdWFlNGNcdWM5YzAsIFx1YWMwNFx1YzEyMFx1Yzc0MCAxXHViZDgwXHVkMTMwIDxlbT5tPFwvZW0+XHVhZTRjXHVjOWMwIFx1YmM4OFx1ZDYzOFx1YWMwMCBcdWJhNTRcdWFjYThcdWM4MzggXHVjNzg4XHVjNzNjXHViYTcwIDxlbT5pPFwvZW0+XHViYzg4IFx1YWMwNFx1YzEyMFx1Yzc1OCBcdWFjMDBcdWM5MTFcdWNlNThcdWIyOTQgPGVtPnc8c3ViPmk8XC9zdWI+PFwvZW0+XHVjNzc0XHViMmU0LiAoMSAmbGU7IDxlbT5pPFwvZW0+Jm5ic3A7JmxlOyZuYnNwOzxlbT5tPFwvZW0+KSBcdWM3NzRcdWI1NGMgXHVjNzkwXHVjNWYwXHVjMjE4IDxlbT5rPFwvZW0+XHVjNWQwIFx1YjMwMFx1ZDU3NFx1YzExYywgMVx1YmM4OCBcdWM4MTVcdWM4MTBcdWM1ZDBcdWMxMWMgXHVjMmRjXHVjNzkxXHVkNTc0XHVjMTFjIDxlbT5uPFwvZW0+XHViYzg4IFx1YzgxNVx1YzgxMFx1YzVkMFx1YzExYyBcdWIwNWRcdWIwOThcdWIyOTQgXHVhYzA0XHVjMTIwIDxlbT5rPFwvZW0+XHVhYzFjXHViODVjIFx1Yzc3NFx1YjhlOFx1YzViNFx1YzljNCBcdWNkNWNcdWIyZTggXHViMmU4XHVjMjFjIFx1YWNiZFx1Yjg1Y1x1Yzc1OCBcdWFlMzhcdWM3NzRcdWI5N2MgXHVhZDZjXHVkNTU4XHVjNWVjXHViNzdjLjxcL3A+XHJcblxyXG48cD5cdWIyZThcdWMyMWMgXHVhY2JkXHViODVjXHViNzgwIFx1YWMxOVx1Yzc0MCBcdWM4MTVcdWM4MTBcdWM3NDQgXHViNDUwIFx1YmM4OCBcdWM5YzBcdWIwOThcdWM5YzAgXHVjNTRhXHViMjk0IFx1YWNiZFx1Yjg1Y1x1Yjk3YyBcdWM3NThcdWJiZjhcdWQ1NThcdWJhNzAsIFx1YWNiZFx1Yjg1Y1x1Yzc1OCBcdWFlMzhcdWM3NzRcdWIyOTQgXHVkNTc0XHViMmY5IFx1YWNiZFx1Yjg1Y1x1Yjk3YyBcdWFkNmNcdWMxMzFcdWQ1NThcdWIyOTQgXHVhYzA0XHVjMTIwXHViNGU0XHVjNzU4IFx1YWMwMFx1YzkxMVx1Y2U1OCBcdWQ1NjlcdWM3NDQgXHVjNzU4XHViYmY4XHVkNTVjXHViMmU0LjxcL3A+XHJcbiIsImlucHV0IjoiPHA+XHVjY2FiXHVjOWY4IFx1YzkwNFx1YzVkMCBcdWMxMzggXHVjODE1XHVjMjE4IDxlbT5uPFwvZW0+LCA8ZW0+bTxcL2VtPiwgPGVtPms8XC9lbT5cdWFjMDAgXHVhY2Y1XHViYzMxXHVjNzNjXHViODVjIFx1YWQ2Y1x1YmQ4NFx1YjQxOFx1YzViNCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjJlNFx1Yzc0YyA8ZW0+bTxcL2VtPlx1YWMxY1x1Yzc1OCBcdWM5MDQgXHVjOTExIDxlbT5pPFwvZW0+XHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCBcdWMxMzggXHVjODE1XHVjMjE4IDxlbT54PHN1Yj5pPFwvc3ViPjxcL2VtPiwgPGVtPnk8c3ViPmk8XC9zdWI+PFwvZW0+LCA8ZW0+dzxzdWI+aTxcL3N1Yj48XC9lbT5cdWFjMDAgXHVhY2Y1XHViYzMxXHVjNzNjXHViODVjIFx1YWQ2Y1x1YmQ4NFx1YjQxOFx1YzViNCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1Yzc3NFx1YjI5NCA8ZW0+aTxcL2VtPlx1YmM4OCBcdWFjMDRcdWMxMjBcdWM3NzQgPGVtPng8c3ViPmk8XC9zdWI+PFwvZW0+XHViYzg4IFx1YzgxNVx1YzgxMFx1YWNmYyA8ZW0+eTxzdWI+aTxcL3N1Yj48XC9lbT5cdWJjODggXHVjODE1XHVjODEwXHVjNzQ0IFx1Yzc4N1x1YjI5NCBcdWFjMDBcdWM5MTFcdWNlNTggPGVtPnc8c3ViPmk8XC9zdWI+PFwvZW0+XHVjNzU4IFx1YWMwNFx1YzEyMFx1Yzc3NFx1Yjc3Y1x1YjI5NCBcdWFjODNcdWM3NDQgXHVjNzU4XHViYmY4XHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cdWI4ZThcdWQ1MDRcdWIwOTggXHViMmU0XHVjOTExXHVhYzA0XHVjMTIwXHVjNzQwIFx1YzhmY1x1YzViNFx1YzljMFx1YzljMCBcdWM1NGFcdWIyOTRcdWIyZTQuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+MVx1YmM4OCBcdWM4MTVcdWM4MTBcdWM1ZDBcdWMxMWMgXHVjMmRjXHVjNzkxXHVkNTc0XHVjMTFjIDxlbT5uPFwvZW0+XHViYzg4IFx1YzgxNVx1YzgxMFx1YzVkMFx1YzExYyBcdWIwNWRcdWIwOThcdWIyOTQgXHVhYzA0XHVjMTIwIDxlbT5rPFwvZW0+XHVhYzFjXHViODVjIFx1Yzc3NFx1YjhlOFx1YzViNFx1YzljNCBcdWNkNWNcdWIyZTggXHViMmU4XHVjMjFjIFx1YWNiZFx1Yjg1Y1x1Yzc1OCBcdWFlMzhcdWM3NzRcdWI5N2MgXHVjZDljXHViODI1XHVkNTU4XHViNzdjLiBcdWIyZTgsIFx1YWRmOFx1YjdlY1x1ZDU1YyBcdWFjYmRcdWI4NWNcdWFjMDAgXHVjNWM2XHViMmU0XHViYTc0IDxjb2RlPi0xPFwvY29kZT5cdWM3NDQgXHVjZDljXHViODI1XHVkNTU4XHViNzdjLjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjEiLCJwcm9ibGVtX2xhbmdfY29kZSI6Ilx1ZDU1Y1x1YWQ2ZFx1YzViNCIsImxpbWl0IjoiPHVsPlxyXG5cdDxsaT4yICZsZTsgPGVtPm48XC9lbT4gJmx0OyAxMDxzdXA+NjxcL3N1cD48XC9saT5cclxuXHQ8bGk+MSAmbGU7IDxlbT5tPFwvZW0+LCA8ZW0+azxcL2VtPiAmbHQ7IDEwPHN1cD42PFwvc3VwPjxcL2xpPlxyXG5cdDxsaT4xICZsZTsgPGVtPng8c3ViPmk8XC9zdWI+PFwvZW0+LCA8ZW0+eTxzdWI+aTxcL3N1Yj48XC9lbT4gJmxlOyBuPFwvbGk+XHJcblx0PGxpPjxlbT54PHN1Yj5pPFwvc3ViPjxcL2VtPiAmbmU7IDxlbT55PHN1Yj5pPFwvc3ViPjxcL2VtPiZuYnNwOygxICZsZTsgPGVtPmk8XC9lbT4gJmxlOyA8ZW0+bjxcL2VtPik8XC9saT5cclxuXHQ8bGk+PGVtPmk8XC9lbT4gJm5lOyA8ZW0+ajxcL2VtPiAmckFycjsgezxlbT54PHN1Yj5pPFwvc3ViPjxcL2VtPiwgPGVtPnk8c3ViPmk8XC9zdWI+PFwvZW0+fSAmbmU7IHs8ZW0+eDxzdWI+ajxcL3N1Yj48XC9lbT4sJm5ic3A7PGVtPnk8c3ViPmo8XC9zdWI+PFwvZW0+fSZuYnNwOygxICZsZTsgPGVtPmk8XC9lbT4sIDxlbT5qPFwvZW0+ICZsZTsgPGVtPm48XC9lbT4pPFwvbGk+XHJcblx0PGxpPjEgJmxlOyA8ZW0+dzxzdWI+aTxcL3N1Yj48XC9lbT4gJmxlOyAxMDxzdXA+ODxcL3N1cD48XC9saT5cclxuPFwvdWw+XHJcbiIsInN1YnRhc2sxIjoiPHA+XHVjNzc0IFx1YzExY1x1YmUwY1x1ZDBkY1x1YzJhNFx1ZDA2Y1x1YjI5NCBcdWIyZTRcdWM3NGNcdWM3NTggXHVjODcwXHVhYzc0XHVjNzQ0IFx1YjljY1x1Yzg3MVx1ZDU1Y1x1YjJlNC46PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+bWluKDxlbT5uPFwvZW0+LCA8ZW0+bTxcL2VtPiwgPGVtPms8XC9lbT4pICZsZTsgMzxcL2xpPlxyXG48XC91bD5cclxuIiwic3VidGFzazIiOiI8cD5cdWM3NzQgXHVjMTFjXHViZTBjXHVkMGRjXHVjMmE0XHVkMDZjXHViMjk0IFx1YjJlNFx1Yzc0Y1x1Yzc1OCBcdWM4NzBcdWFjNzRcdWM3NDQgXHViOWNjXHVjODcxXHVkNTVjXHViMmU0Ljo8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5taW4oPGVtPm48XC9lbT4sIDxlbT5tPFwvZW0+LCA8ZW0+azxcL2VtPikgJmxlOyA0PFwvbGk+XHJcbjxcL3VsPlxyXG4iLCJzdWJ0YXNrMyI6IjxwPlx1Yzc3NCBcdWMxMWNcdWJlMGNcdWQwZGNcdWMyYTRcdWQwNmNcdWIyOTQgXHViMmU0XHVjNzRjXHVjNzU4IFx1Yzg3MFx1YWM3NFx1Yzc0NCBcdWI5Y2NcdWM4NzFcdWQ1NWNcdWIyZTQuOjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPm1pbig8ZW0+bjxcL2VtPiwgPGVtPm08XC9lbT4sIDxlbT5rPFwvZW0+KSAmbGU7IDU8XC9saT5cclxuPFwvdWw+XHJcbiJ9LHsicHJvYmxlbV9pZCI6IjE1Nzc3IiwicHJvYmxlbV9sYW5nIjoiMSIsInRpdGxlIjoiWHRyZW1lIE5QLWhhcmQgUHJvYmxlbT8hIiwiZGVzY3JpcHRpb24iOiI8cD48ZW0+Q2F1dGlvbiEgVGhpcyBwcm9ibGVtIHR1cm5lZCBvdXQgdG8gYmUgTlAtaGFyZC4gQnV0IHNpbmNlIHRoZXJlIHdlcmUgbm8gcnVsZXMgYWdhaW5zdCB3cml0aW5nIGFuIE5QLWhhcmQgcHJvYmxlbSwgd2UgZGVjaWRlZCB0byBsZWF2ZSB0aGlzIHByb2JsZW0gaGVyZS48XC9lbT48XC9wPlxyXG5cclxuPHA+VGhlcmUgaXMgYSBiaWRpcmVjdGlvbmFsIGdyYXBoIGNvbnNpc3Rpbmcgb2YgPGVtPm48XC9lbT4mbmJzcDt2ZXJ0aWNlcyBhbmQgPGVtPm08XC9lbT4mbmJzcDtlZGdlcy4gVGhlIHZlcnRpY2VzIGFuZCBlZGdlcyBhcmUgbnVtYmVyZWQgZnJvbSAxIHRvIDxlbT5uPFwvZW0+Jm5ic3A7YW5kIDEgdG8gPGVtPm08XC9lbT4mbmJzcDtyZXNwZWN0aXZlbHksIGFuZCB0aGUgd2VpZ2h0IG9mIGVkZ2UgPGVtPmk8XC9lbT4mbmJzcDtpcyA8ZW0+dzxzdWI+aTxcL3N1Yj48XC9lbT4uICgxICZsZTsgPGVtPmk8XC9lbT4gJmxlOyA8ZW0+bTxcL2VtPikgR2l2ZW4gYSBuYXR1cmFsIG51bWJlciA8ZW0+azxcL2VtPiwgZmluZCB0aGUgbGVuZ3RoIG9mIHRoZSBzaG9ydGVzdCBzaW1wbGUgcGF0aCB0aGF0IHN0YXJ0cyBmcm9tIHZlcnRleCAxIGFuZCBlbmRzIGF0IHZlcnRleCA8ZW0+bjxcL2VtPiwgYW5kIGNvbnNpc3RzIG9mIDxlbT5rPFwvZW0+Jm5ic3A7ZWRnZXMuIEEgc2ltcGxlIHBhdGggaXMgYSBwYXRoIHRoYXQgZG9lcyBub3QgdmlzaXQgc2FtZSB2ZXJ0ZXggdHdpY2UsIGFuZCBsZW5ndGggb2YgYSBwYXRoIGlzIHRoZSBzdW0gb2Ygd2VpZ2h0IG9mIGVkZ2VzIHRoYXQgY29uc2lzdHMgdGhlIHBhdGguPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5JbiB0aGUgZmlyc3QgbGluZSwgdGhyZWUgc3BhY2Utc2VwYXJhdGVkIGludGVnZXJzIDxlbT5uPFwvZW0+LCA8ZW0+bTxcL2VtPiwgPGVtPms8XC9lbT4gYXJlIGdpdmVuLjxcL3A+XHJcblxyXG48cD5JbiB0aGUgbmV4dCA8ZW0+bTxcL2VtPiZuYnNwO2xpbmVzLCB0aHJlZSBzcGFjZS1zZXBhcmF0ZWQgaW50ZWdlcnMgPGVtPng8c3ViPmk8XC9zdWI+PFwvZW0+LCA8ZW0+eTxzdWI+aTxcL3N1Yj48XC9lbT4sIDxlbT53PHN1Yj5pPFwvc3ViPjxcL2VtPiBhcmUgZ2l2ZW4uIFRoZXkgZGVub3RlIHRoYXQgZWRnZSA8ZW0+aTxcL2VtPiZuYnNwO2lzIGNvbm5lY3RpbmcgdmVydGV4IDxlbT54PHN1Yj5pPFwvc3ViPjxcL2VtPiZuYnNwO2FuZCB2ZXJ0ZXggPGVtPnk8c3ViPmk8XC9zdWI+PFwvZW0+LCBhbmQgaGFzIHdlaWdodCA8ZW0+dzxzdWI+aTxcL3N1Yj48XC9lbT4uJm5ic3A7PFwvcD5cclxuXHJcbjxwPk5vIGxvb3BzIG9yIG11bHRpcGxlIGVkZ2VzIGFyZSBnaXZlbi48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5QcmludCB0aGUgbGVuZ3RoIG9mIHRoZSBzaG9ydGVzdCBzaW1wbGUgcGF0aCB0aGF0IHN0YXJ0cyBmcm9tIHZlcnRleCAxIGFuZCBlbmRzIGF0IHZlcnRleCA8ZW0+bjxcL2VtPiwgYW5kIGNvbnNpc3RzIG9mIDxlbT5rPFwvZW0+Jm5ic3A7ZWRnZXMuIElmIHRoZXJlIGlzIG5vIHN1Y2ggcGF0aCwgcHJpbnQgPGNvZGU+LTE8XC9jb2RlPi48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIwIiwicHJvYmxlbV9sYW5nX2NvZGUiOiJcdWM2MDFcdWM1YjQiLCJsaW1pdCI6Ijx1bD5cclxuXHQ8bGk+MiAmbGU7IDxlbT5uPFwvZW0+ICZsdDsgMTA8c3VwPjY8XC9zdXA+PFwvbGk+XHJcblx0PGxpPjEgJmxlOyA8ZW0+bTxcL2VtPiwgPGVtPms8XC9lbT4gJmx0OyAxMDxzdXA+NjxcL3N1cD48XC9saT5cclxuXHQ8bGk+MSAmbGU7IDxlbT54PHN1Yj5pPFwvc3ViPjxcL2VtPiwgPGVtPnk8c3ViPmk8XC9zdWI+PFwvZW0+ICZsZTsgbjxcL2xpPlxyXG5cdDxsaT48ZW0+eDxzdWI+aTxcL3N1Yj48XC9lbT4gJm5lOyA8ZW0+eTxzdWI+aTxcL3N1Yj48XC9lbT4mbmJzcDsoMSAmbGU7IDxlbT5pPFwvZW0+ICZsZTsgPGVtPm48XC9lbT4pPFwvbGk+XHJcblx0PGxpPjxlbT5pPFwvZW0+ICZuZTsgPGVtPmo8XC9lbT4gJnJBcnI7IHs8ZW0+eDxzdWI+aTxcL3N1Yj48XC9lbT4sIDxlbT55PHN1Yj5pPFwvc3ViPjxcL2VtPn0gJm5lOyB7PGVtPng8c3ViPmo8XC9zdWI+PFwvZW0+LCZuYnNwOzxlbT55PHN1Yj5qPFwvc3ViPjxcL2VtPn0mbmJzcDsoMSAmbGU7IDxlbT5pPFwvZW0+LCA8ZW0+ajxcL2VtPiAmbGU7IDxlbT5uPFwvZW0+KTxcL2xpPlxyXG5cdDxsaT4xICZsZTsgPGVtPnc8c3ViPmk8XC9zdWI+PFwvZW0+ICZsZTsgMTA8c3VwPjg8XC9zdXA+PFwvbGk+XHJcbjxcL3VsPlxyXG4iLCJzdWJ0YXNrMSI6IjxwPlRoaXMgc3VidGFzayBoYXMgYWRkaXRpb25hbCBjb25zdHJhaW50cy46Jm5ic3A7PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+bWluKDxlbT5uPFwvZW0+LCA8ZW0+bTxcL2VtPiwgPGVtPms8XC9lbT4pICZsZTsgMzxcL2xpPlxyXG48XC91bD5cclxuIiwic3VidGFzazIiOiI8cD5UaGlzIHN1YnRhc2sgaGFzIGFkZGl0aW9uYWwgY29uc3RyYWludHMuOiZuYnNwOzxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPm1pbig8ZW0+bjxcL2VtPiwgPGVtPm08XC9lbT4sIDxlbT5rPFwvZW0+KSAmbGU7IDQ8XC9saT5cclxuPFwvdWw+XHJcbiIsInN1YnRhc2szIjoiPHA+VGhpcyBzdWJ0YXNrIGhhcyBhZGRpdGlvbmFsIGNvbnN0cmFpbnRzLjombmJzcDs8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5taW4oPGVtPm48XC9lbT4sIDxlbT5tPFwvZW0+LCA8ZW0+azxcL2VtPikgJmxlOyA1PFwvbGk+XHJcbjxcL3VsPlxyXG4ifV0=

출처

University > KAIST > 2018 KAIST RUN Spring Contest X번

  • 문제를 만든 사람: alex9801
  • 문제의 오타를 찾은 사람: jh05013

채점

  • 예제는 채점하지 않는다.