시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
10 초 (추가 시간 없음) 1024 MB 42 19 11 32.353%

## 문제

The original title of this problem is "Tree Product Metric Voronoi Diagram Query Without One Point".

You are given two weighted trees $T_1,\ T_2$ of size $N$, where each vertex are labeled with numbers $1 \ldots N$. Let $dist(T_1,\ i,\ j)$ be the total weight of the shortest path from node $i$ to $j$ in tree $T_1$, and define $dist(T_2,\ i,\ j)$ similarly.

Consider a point set of size $N$. Similar to Manhattan metric (in fact, this is a generalization of it), we can define the distance between two points $1 \le i,\ j \le N$: It is the sum of two distances, $dist(T_1,\ i,\ j) + dist(T_2,\ i,\ j)$. For each $1 \le i \le N$, please determine the "closest point" from the point $i$. Formally, for each $i$, you should find $min_{j \neq i}{dist(T_1,\ i,\ j) + dist(T_2,\ i,\ j)}$.

## 입력

In the first line, a single integer $N$ denoting the number of vertices in both trees is given. ($2 \le N \le 250\,000$)

In the next $N-1$ lines, description of the first tree is given. Each of the $N-1$ lines contains three integers $S_i,\ E_i,\ W_i$, which indicates there is an edge connecting two vertices $S_i,\ E_i$ with weight $W_i$ ($1 \le S_i,\ E_i \le N,\ 1 \le W_i \le 10^9$)

In the next $N-1$ lines, description of the second tree is given in the same format.

## 출력

Print $N$ lines, each containing a single integer. In the $i$-th line, you should print a single integer denoting the answer for the point $i$.

## 예제 입력 1

5
1 2 10
2 4 20
3 4 30
4 5 50
1 2 15
1 3 25
1 4 35
1 5 25


## 예제 출력 1

25
25
85
65
105


## 예제 입력 2

9
5 7 6577
4 5 8869
5 9 9088
2 1 124
6 2 410
2 8 8154
4 8 4810
3 4 4268
3 9 763
6 2 8959
7 4 7984
3 8 504
8 6 9085
5 2 4861
1 9 8539
1 7 7834


## 예제 출력 2

18084
9369
9582
23430
26694
9369
23430
9582
22988