시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
2 초 128 MB 694 212 177 33.271%

문제

문제가 잘 풀리지 않을 때, 문제를 바라보는 시각을 조금만 다르게 가지면 문제가 쉽게 풀리는 경험을 종종 해 보았을 것이다. 여러 가지 방법이 있지만 그 중 하나로 우리가 풀고 싶은 문제를 좀 더 쉬운 문제로 바꾸어 풀어 보는 방법이 있다.

소위 "다른 문제로 바꾸어 풀기"라는 이 방법은, 아래와 같은 과정으로 이루어진다.

① 풀고자 하는 문제를 다른 문제로 변환한다.
  ② 변환된 문제의 답을 구한다.
  ③ 구한 답을 원래 문제의 답으로 삼는다.

이를 보다 쉽게 이해하기 위해서, 다음의 초등학교 수학 수준의 예를 들어 보자.

문제 1. "양의 정수 X는 3의 배수인가?"

이 문제를 아래와 같이 변환하는데, X의 각 자리의 수를 단순히 더한 수 Y를 만든다. 예를 들어 X가 1107이었다면, Y는 1+1+0+7=9가 된다. 그리고 Y에 대해서, 아래와 같은 문제를 생각한다.

문제 2. "Y는 3의 배수인가?"

위의 문제 1의 답은 아래의 문제 2의 대답과 일치한다. 위의 예의 경우, Y=9는 3의 배수이므로 X=1107 역시 3의 배수가 되는 것이다. 214는 각 자리수의 합 2+1+4=7이 3의 배수가 아니므로 3의 배수가 아니다.

문제 1을 풀고 싶으면 문제 2로 변환을 해서 문제 2의 답을 문제 1의 답으로 삼으면 된다. 일반적으로 Y는 X보다 크기가 작으므로, 문제 2가 더 쉬운 문제가 된다.
  당신이 알고 있는 3의 배수는 한 자리 수밖에 없다고 가정하자. 즉, 문제 변환의 과정을 여러 번 거치다 보면 Y가 한 자리 수가 되는 순간이 있게 되는데, 그렇게 될 때까지 문제 변환을 반복한다는 뜻이다. 변환 후의 Y가 3, 6, 9 중 하나이면 원래의 수 X는 3의 배수이고, Y가 1, 2, 4, 5, 7, 8 중 하나이면 원래의 수 X는 3의 배수가 아니다.

큰 수 X가 주어졌을 때, 앞에서 설명한 문제 변환의 과정을 몇 번 거쳐야 Y가 한 자리 수가 되어, X가 3의 배수인지 아닌지를 알 수 있게 될지를 구하는 프로그램을 작성하시오.

입력

첫째 줄에 큰 자연수 X가 주어진다. X는 1,000,000자리 이하의 수이다.

출력

첫째 줄에 문제 변환의 과정을 몇 번 거쳤는지를 출력한다. 이 수는 음이 아닌 정수가 되어야 한다. 둘째 줄에는 주어진 수가 3의 배수이면 YES, 아니면 NO를 출력한다.

예제 입력

1234567

예제 출력

3
NO

힌트

1234567 -> 28 -> 10 -> 1 (NO)

출처