시간 제한메모리 제한제출정답맞힌 사람정답 비율
5 초 (추가 시간 없음) 256 MB209787.500%

문제

$Path_i$는 $i$ 개의 정점을 가진 방향 그래프로, 모든 $1 \le j < i$ 에 대해 $j \rightarrow j + 1$ 로 가는 간선이 존재한다.

가중치 있는 방향 그래프 $G_1$ 과 방향 그래프 $G_2$ 의 텐서 곱 (tensor product) $G_1 \times G_2$ 는 다음과 같이 정의된다:

  • 정점 집합은 $\{(u, v)|u \in G_1, v \in G_2\}$ 의 형태다. 정점 집합의 크기는 $|G_1| \times |G_2|$ 이다.
  • 두 정점 $(u_1, v_1), (u_2, v_2)$ 를 잇는 무방향 간선이 존재한다는 것은, $G_1$ 에 $u_1 \rightarrow u_2$ 방향의 간선, $G_2$ 에 $v_1 \rightarrow v_2$ 방향의 간선이 있음을 뜻한다. 
  • 간선의 가중치는, $G_1$에서 두 정점 $u_1 \rightarrow u_2$를 잇는 간선의 가중치와 동일하다. 

$N$ 개의 정점과 $M$ 개의 간선을 가진 방향 그래프 $G$ 가 입력으로 주어진다. 각 간선에는 양의 정수 가중치가 부여되어 있다. $G \times Path_i$ 라는 그래프를 생각하자. 이 그래프는 무방향이고 각 간선에 양의 정수 가중치가 부여되어 있다. 모든 $2 \le i \le Q + 1$에 대해, $G \times Path_i$ 의 최소 스패닝 트리의 간선 가중치 합을 출력하라. 쿼리로 들어오는 모든 $G \times Path_i$ 에 대해 스패닝 트리가 항상 존재하게끔 입력이 주어짐이 보장된다.

입력

첫 번째 줄에 세 정수 $N, Q, M$ 이 주어진다. ($1 \le N, Q \le 100\,000, 1 \le M \le 200\,000$)

이후 $M$ 개의 줄에 세 개의 정수 $u_i, v_i, w_i$ 가 주어진다. $u_i \rightarrow v_i$ 방향의 가중치 $w_i$ 의 간선이 존재한다는 뜻이다. ($1 \le u_i, v_i \le N, 1 \le w_i \le 30$) 

출력

$Q$ 개의 줄을 출력하라. 이 중 $i$ 번째 줄에는 $G \times Path_{i + 1}$ 에서의 문제의 정답을 출력해야 한다.

예제 입력 1

4 4 8
3 4 1
1 1 3
1 3 2
4 2 4
4 4 2
2 2 3
1 2 2
1 4 3

예제 출력 1

16
23
30
37

예제 입력 2

4 4 8
3 4 12
1 1 20
1 3 22
4 2 12
4 4 2
2 2 2
1 2 2
1 4 2

예제 출력 2

62
80
98
116

예제 입력 3

6 6 15
1 2 1
1 3 1
3 4 1
2 4 1
6 3 2
6 5 2
3 5 2
2 3 2
4 3 2
6 4 2
5 4 2
4 6 2
6 6 2
5 5 3
5 1 3

예제 출력 3

19
28
37
46
55
64
W3sicHJvYmxlbV9pZCI6IjE4OTMzIiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHVjZDVjXHVjMThjIFx1YzJhNFx1ZDMyOFx1YjJkZCBcdWQyYjhcdWI5YWNcdWM2NDAgXHVjZmZjXHViOWFjIiwiZGVzY3JpcHRpb24iOiI8cD4kUGF0aF9pJFx1YjI5NCAkaSQgXHVhYzFjXHVjNzU4IFx1YzgxNVx1YzgxMFx1Yzc0NCBcdWFjMDBcdWM5YzQgXHViYzI5XHVkNWE1IFx1YWRmOFx1Yjc5OFx1ZDUwNFx1Yjg1YywgXHViYWE4XHViNGUwICQxIFxcbGUgaiAmbHQ7IGkkIFx1YzVkMCBcdWIzMDBcdWQ1NzQgJGogXFxyaWdodGFycm93IGogKyAxJCBcdWI4NWMgXHVhYzAwXHViMjk0IFx1YWMwNFx1YzEyMFx1Yzc3NCBcdWM4NzRcdWM3YWNcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YWMwMFx1YzkxMVx1Y2U1OCBcdWM3ODhcdWIyOTQgXHViYzI5XHVkNWE1IFx1YWRmOFx1Yjc5OFx1ZDUwNCAkR18xJCBcdWFjZmMgXHViYzI5XHVkNWE1IFx1YWRmOFx1Yjc5OFx1ZDUwNCAkR18yJCBcdWM3NTggXHVkMTUwXHVjMTFjIFx1YWNmMSAodGVuc29yIHByb2R1Y3QpICRHXzEgXFx0aW1lcyBHXzIkIFx1YjI5NCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzc0IFx1YzgxNVx1Yzc1OFx1YjQxY1x1YjJlNDo8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5cdWM4MTVcdWM4MTAgXHVjOWQxXHVkNTY5XHVjNzQwICRcXHsodSwgdil8dSBcXGluIEdfMSwgdiBcXGluIEdfMlxcfSQgXHVjNzU4IFx1ZDYxNVx1ZDBkY1x1YjJlNC4gXHVjODE1XHVjODEwIFx1YzlkMVx1ZDU2OVx1Yzc1OCBcdWQwNmNcdWFlMzBcdWIyOTQgJHxHXzF8IFxcdGltZXMgfEdfMnwkIFx1Yzc3NFx1YjJlNC48XC9saT5cclxuXHQ8bGk+XHViNDUwIFx1YzgxNVx1YzgxMCAkKHVfMSwgdl8xKSwgKHVfMiwgdl8yKSQgXHViOTdjIFx1Yzc4N1x1YjI5NCA8c3Ryb25nPlx1YmIzNFx1YmMyOVx1ZDVhNSBcdWFjMDRcdWMxMjA8XC9zdHJvbmc+XHVjNzc0IFx1Yzg3NFx1YzdhY1x1ZDU1Y1x1YjJlNFx1YjI5NCBcdWFjODNcdWM3NDAsICRHXzEkIFx1YzVkMCAkdV8xIFxccmlnaHRhcnJvdyB1XzIkIFx1YmMyOVx1ZDVhNVx1Yzc1OCBcdWFjMDRcdWMxMjAsICRHXzIkIFx1YzVkMCAkdl8xIFxccmlnaHRhcnJvdyB2XzIkIFx1YmMyOVx1ZDVhNVx1Yzc1OCBcdWFjMDRcdWMxMjBcdWM3NzQgXHVjNzg4XHVjNzRjXHVjNzQ0IFx1YjczYlx1ZDU1Y1x1YjJlNC4mbmJzcDs8XC9saT5cclxuXHQ8bGk+XHVhYzA0XHVjMTIwXHVjNzU4IFx1YWMwMFx1YzkxMVx1Y2U1OFx1YjI5NCwgJEdfMSRcdWM1ZDBcdWMxMWMgXHViNDUwIFx1YzgxNVx1YzgxMCAkdV8xIFxccmlnaHRhcnJvdyB1XzIkXHViOTdjIFx1Yzc4N1x1YjI5NCBcdWFjMDRcdWMxMjBcdWM3NTggXHVhYzAwXHVjOTExXHVjZTU4XHVjNjQwIFx1YjNkOVx1Yzc3Y1x1ZDU1OFx1YjJlNC4mbmJzcDs8XC9saT5cclxuPFwvdWw+XHJcblxyXG48cD4kTiQgXHVhYzFjXHVjNzU4IFx1YzgxNVx1YzgxMFx1YWNmYyAkTSQgXHVhYzFjXHVjNzU4IFx1YWMwNFx1YzEyMFx1Yzc0NCBcdWFjMDBcdWM5YzQgXHViYzI5XHVkNWE1IFx1YWRmOFx1Yjc5OFx1ZDUwNCAkRyQgXHVhYzAwIFx1Yzc4NVx1YjgyNVx1YzczY1x1Yjg1YyBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1YWMwMSBcdWFjMDRcdWMxMjBcdWM1ZDBcdWIyOTQgXHVjNTkxXHVjNzU4IFx1YzgxNVx1YzIxOCBcdWFjMDBcdWM5MTFcdWNlNThcdWFjMDAgXHViZDgwXHVjNWVjXHViNDE4XHVjNWI0IFx1Yzc4OFx1YjJlNC4gJEcgXFx0aW1lcyBQYXRoX2kkIFx1Yjc3Y1x1YjI5NCBcdWFkZjhcdWI3OThcdWQ1MDRcdWI5N2MgXHVjMGRkXHVhYzAxXHVkNTU4XHVjNzkwLiBcdWM3NzQgXHVhZGY4XHViNzk4XHVkNTA0XHViMjk0IFx1YmIzNFx1YmMyOVx1ZDVhNVx1Yzc3NFx1YWNlMCBcdWFjMDEgXHVhYzA0XHVjMTIwXHVjNWQwIFx1YzU5MVx1Yzc1OCBcdWM4MTVcdWMyMTggXHVhYzAwXHVjOTExXHVjZTU4XHVhYzAwIFx1YmQ4MFx1YzVlY1x1YjQxOFx1YzViNCBcdWM3ODhcdWIyZTQuIFx1YmFhOFx1YjRlMCAkMiBcXGxlIGkgXFxsZSBRICsgMSRcdWM1ZDAgXHViMzAwXHVkNTc0LCAkRyBcXHRpbWVzIFBhdGhfaSQgXHVjNzU4IFx1Y2Q1Y1x1YzE4YyBcdWMyYTRcdWQzMjhcdWIyZGQgXHVkMmI4XHViOWFjXHVjNzU4IFx1YWMwNFx1YzEyMCBcdWFjMDBcdWM5MTFcdWNlNTggXHVkNTY5XHVjNzQ0IFx1Y2Q5Y1x1YjgyNVx1ZDU1OFx1Yjc3Yy4gPHN0cm9uZz5cdWNmZmNcdWI5YWNcdWI4NWMgXHViNGU0XHVjNWI0XHVjNjI0XHViMjk0IFx1YmFhOFx1YjRlMCAkRyBcXHRpbWVzIFBhdGhfaSQgXHVjNWQwIFx1YjMwMFx1ZDU3NCBcdWMyYTRcdWQzMjhcdWIyZGQgXHVkMmI4XHViOWFjXHVhYzAwIFx1ZDU2ZFx1YzBjMSBcdWM4NzRcdWM3YWNcdWQ1NThcdWFjOGNcdWIwNTQgXHVjNzg1XHViODI1XHVjNzc0IFx1YzhmY1x1YzViNFx1YzlkMFx1Yzc3NCBcdWJjZjRcdWM3YTVcdWI0MWNcdWIyZTQuPFwvc3Ryb25nPjxcL3A+XHJcbiIsImlucHV0IjoiPHA+XHVjY2FiIFx1YmM4OFx1YzlmOCBcdWM5MDRcdWM1ZDAgXHVjMTM4IFx1YzgxNVx1YzIxOCAkTiwgUSwgTSQgXHVjNzc0IFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gKCQxIFxcbGUgTiwgUSBcXGxlIDEwMFxcLDAwMCwgMSBcXGxlIE0gXFxsZSAyMDBcXCwwMDAkKTxcL3A+XHJcblxyXG48cD5cdWM3NzRcdWQ2YzQgJE0kIFx1YWMxY1x1Yzc1OCBcdWM5MDRcdWM1ZDAgXHVjMTM4IFx1YWMxY1x1Yzc1OCBcdWM4MTVcdWMyMTgmbmJzcDskdV9pLCB2X2ksIHdfaSQgXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gJHVfaSBcXHJpZ2h0YXJyb3cgdl9pJCBcdWJjMjlcdWQ1YTVcdWM3NTggXHVhYzAwXHVjOTExXHVjZTU4ICR3X2kkIFx1Yzc1OCBcdWFjMDRcdWMxMjBcdWM3NzQgXHVjODc0XHVjN2FjXHVkNTVjXHViMmU0XHViMjk0IFx1YjczYlx1Yzc3NFx1YjJlNC4gKCQxIFxcbGUgdV9pLCB2X2kgXFxsZSBOLCAxIFxcbGUgd19pIFxcbGUgMzAkKSZuYnNwOzxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPiRRJCBcdWFjMWNcdWM3NTggXHVjOTA0XHVjNzQ0IFx1Y2Q5Y1x1YjgyNVx1ZDU1OFx1Yjc3Yy4gXHVjNzc0IFx1YzkxMSAkaSQgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCAkRyBcXHRpbWVzIFBhdGhfe2kgKyAxfSQgXHVjNWQwXHVjMTFjXHVjNzU4IFx1YmIzOFx1YzgxY1x1Yzc1OCBcdWM4MTVcdWIyZjVcdWM3NDQgXHVjZDljXHViODI1XHVkNTc0XHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJLb3JlYW4ifSx7InByb2JsZW1faWQiOiIxODkzMyIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IkV4b3RpYyBBbmNpZW50IENpdHkiLCJkZXNjcmlwdGlvbiI6IjxwPiZxdW90O1dlbGNvbWUgdG8gdGhlIGFuY2llbnQgY2l0eSBYaSYjMzk7YW4hJnF1b3Q7PFwvcD5cclxuXHJcbjxwPkNvbWluZyBkb3duIHRoZSBnYW5nd2F5IGFuZCBjb21pbmcgdXAgdGhlIHN0YWlycywgUmlra2EgZmVlbHMgYSBzdHJvbmcgZXhvdGljaXNtIGFtb25nIHRoZSBzaW1wbGlmaWVkIENoaW5lc2UgY2hhcmFjdGVycyBhbmQgY2xlYW4gZnJhbWVsZXNzIGRlc2lnbnMuPFwvcD5cclxuXHJcbjxwPkl0IGFsbCBzdGFydGVkIHdpdGggdGhhdCBsZXR0ZXIsIGFuIGludml0YXRpb24gdG8gWGkmIzM5O2FuIGZvciBhIG9uZS13ZWVrIHRyaXAgZnJvbSB0aGUgYXV0aG9yIG5hbWVkIExDUi4gVGhlIG15c3RlcmlvdXMgbmFtZSByZWZlcnMgdG8gYSBnaXJsIHdobyBpcyBwcm9iYWJseSBmcm9tIFhpJiMzOTthbiBvciBZdXlhbmcgLS0tIFJpa2thIGdvdCBzdWNoIGluZm9ybWF0aW9uIGFmdGVyIGEgd2VlayBvZiBoYXJkIHdvcmsuIEFzIHRoZSBsb3JkIG9mIEV2aWwgRXllLCBzaGUgaGFzIGEgZ3JlYXQgaW50ZXJlc3QgaW4gdGhpcywgZXZlbiBzdHJvbmdlciB0aGFuIHRoYXQgdG8gdGhlIGNpdHkgd2l0aCBhIG1pbGxlbm5pdW0gaGlzdG9yeSB3aGljaCB1c2VkIHRvIGJlIHRoZSBjYXBpdGFsIG9mIDEzIGR5bmFzdGllcy48XC9wPlxyXG5cclxuPHA+RmluYWxseSwgUmlra2EgcmVhY2hlZCB0aGlzIGxlc3MgdmFsdWVkIGNpdHksIGxvb2tpbmcgZm9yd2FyZCB0byBhbiBhbWF6aW5nIG1lZXRpbmcgcXVpeG90aWNhbGx5LjxcL3A+XHJcblxyXG48cD5CdXQgTENSIG5ldmVyIGFwcGVhcmVkLiBCb3JlZCBSaWtrYSBub3RpY2VkIGEgbWFwIG9mIFhpJiMzOTthbiBvbiB0aGUgd2FsbCBvZiB0aGUgaGFsbC4gVGhlIHJvYWRzIGluaGVyaXQgVGFuZyBDaGFuZyYjMzk7YW4gY2l0eSYjMzk7cyBtZXNoIGxheW91dCwganVzdCBsaWtlIGEgY2hlc3Nib2FyZC4gUmlra2EgaGFzIGZlbHQgaXRzIGNvbnZlbmllbmNlIHNpbmNlIHZpc2l0aW5nIEt5b3RvLCBidXQgc2hlIGFsc28ga25vd3MgYWJvdXQgdGhlIHByb2JsZW1zLiBDcm9zc2luZ3MgYmxvY2sgdGhlIHRyYWZmaWMgYW5kIHRoZSBvbGQgcm9hZHMgb2NjdXB5IHRoZSBzcGFjZSBmb3IgbmV3IGVmZmljaWVudCBkZXNpZ25zLjxcL3A+XHJcblxyXG48cD5UaGlzIGhhcyByZW1pbmRlZCB0aGUgZ2lybCBhYm91dCBoZXIgcGVyZmVjdCB1bmlxdWUgc29sdXRpb24uIEhlciB0cmFmZmljIHN5c3RlbSBpbmNsdWRlcyBhIHNldCBvZiB0ZWxlcG9ydGVyIHZlcnRpY2VzICRWJCBhbmQgYSBzZXQgb2Ygc29tZSBiaWRpcmVjdGlvbmFsIGhvcml6b24td29ybWhvbGUgZWRnZXMgJEUkIGxpbmtpbmcgdGhlbS4gUGVvcGxlIGNhbiB0ZWxlcG9ydCBmcm9tIG9uZSB0ZXJtaW5hbCB0byB0aGUgb3RoZXIgaW4gbm8gdGltZS4gVGhlIHZlcnRpY2VzIGZvcm0gYW4gJG4gXFx0aW1lcyAobSsxKSQgZ3JpZCwgdGhhdCBpcywgdGhlcmUgYXJlICRuJCByb3dzIGFuZCAkKG0rMSkkIGNvbHVtbnMsIGNvbnRhaW5pbmcgJG4gXFxjZG90IChtKzEpJCB2ZXJ0aWNlcyBpbiB0b3RhbC4gTGV0ICRcXGxhbmdsZSB4LCB5IFxccmFuZ2xlICh4LCB5IFxcaW4gXFxtYXRoYmJ7Tn0sIHhcXGluIFsxLCBuXSwgeVxcaW4gWzEse20rMX1dKSQgYmUgdGhlIHZlcnRleCBhdCB0aGUgJHgkLXRoIHJvdyBvZiB0aGUgJHkkLXRoIGNvbHVtbi4gSW4gaGVyIGluaXRpYWwgZGVzaWduLCBldmVyeSBlZGdlIGlzIGJldHdlZW4gdHdvIHZlcnRpY2VzIGluIGRpc3RpbmN0IGFkamFjZW50IGNvbHVtbnMsIGFuZCBmb3IgZWFjaCBwYWlyIG9mIGFkamFjZW50IGNvbHVtbnMsIHRoZSBlZGdlcyBhbW9uZyB0aGVtIGFyZSBzaW1pbGFyLiBUaGF0IGlzLCBpZiAkKFxcbGFuZ2xlIHgseSBcXHJhbmdsZSwgXFxsYW5nbGUgeix5KzEgXFxyYW5nbGUpIFxcaW4gRSQsIHRoZW4gZm9yICRpID0gMSwgMiwgXFxkb3RzLCBtLCAoXFxsYW5nbGUgeCxpIFxccmFuZ2xlLCBcXGxhbmdsZSB6LGkrMSBcXHJhbmdsZSkgXFxpbiBFJCBob2xkcy4gQWxzbywgcGVvcGxlIGNhbiB0cmF2ZWwgYnkgdGhlIGVkZ2VzIGJldHdlZW4gYW55IHBhaXIgb2YgdmVydGljZXMgaW4gZWFjaCB0d28tY29sdW1uIHN1YnN5c3RlbSwgd2hpY2ggbWVhbnMsIGZvciAkaSA9IDEsIDIsIFxcZG90cywgbSQsIGlmIHdlIHJlbW92ZSBhbGwgdmVydGljZXMgYW5kIGVkZ2VzIGV4Y2VwdCB0aG9zZSBpbiBvciBiZXR3ZWVuIHRoZSAkaSQtdGggY29sdW1uIGFuZCB0aGUgJChpICsgMSkkLXRoIGNvbHVtbiwgdGhlIHJlbWFpbmluZyB2ZXJ0aWNlcyBhcmUgc3RpbGwgY29ubmVjdGVkLiBObyB0d28gZWRnZXMgY29ubmVjdCB0aGUgc2FtZSBwYWlyIG9mIHZlcnRpY2VzLjxcL3A+XHJcblxyXG48cD5BY3R1YWxseSwgdGhlIGhvcml6b24td29ybWhvbGVzIGFyZSBleHBlbnNpdmUuIFJpa2thIGtub3dzIGVhY2ggZWRnZSBoYXMgYW4gaW50ZWdlciBjb3N0IGxldmVsLCBidXQgdGhlIGNvc3QgbGV2ZWxzIGFyZSBmYWlybHkgbG93IGJlY2F1c2UgdGhlIGVuZXJneSBvZiBob3Jpem9uLXdvcm1ob2xlcyBpcyB0b28gbGFyZ2UgYW5kIGNoYW90aWMgdG8gbWVhc3VyZSBvciBjYWxjdWxhdGUgYWNjdXJhdGVseS4gVGhlIGVkZ2VzIGNvbm5lY3RpbmcgdGhlIHNhbWUgcGFpciBvZiByb3dzIGluIGV2ZXJ5IGNvbHVtbiBoYXZlIHRoZSBzYW1lIGNvc3QuIFRoYXQgaXMsICRcXGZvcmFsbCB4LCB5LCBpLCBqJCwgJHcoKCBcXGxhbmdsZSB4LCBpIFxccmFuZ2xlICwgXFxsYW5nbGUgeSwgaSArIDEgXFxyYW5nbGUgKSkgPSB3KCggXFxsYW5nbGUgeCwgaiBcXHJhbmdsZSAsIFxcbGFuZ2xlIHksIGogKyAxIFxccmFuZ2xlICkpJCBpZiAkKCBcXGxhbmdsZSB4LCBpIFxccmFuZ2xlICwgXFxsYW5nbGUgeSwgaSArIDEgXFxyYW5nbGUgKSwgKCBcXGxhbmdsZSB4LCBqIFxccmFuZ2xlICwgXFxsYW5nbGUgeSwgaiArIDEgXFxyYW5nbGUgKSBcXGluIEUkICwgd2hlcmUgJHcoZSkkIGlzIHRoZSBjb3N0IG9mIGVkZ2UgJGUkLiBOb3cgUmlra2Egd2FudHMgdG8gZGVsZXRlIHNvbWUgKG1heWJlIHplcm8pIGVkZ2VzIGluIG9yZGVyIHRvIG1pbmltaXplIHRoZSB0b3RhbCBjb3N0IHdoaWNoIGlzIHRoZSBzdW0gb2YgY29zdHMgb2YgYWxsIHJlbWFpbmVkIGVkZ2VzLiBUaGUgY29ubmVjdGl2aXR5IGFtb25nIGFsbCB2ZXJ0aWNlcyBtdXN0IGhvbGQuIFRoYXQgaXMsIHdlIGNhbiBzdGlsbCB0cmF2ZWwgYmV0d2VlbiBlYWNoIHBhaXIgb2YgdmVydGljZXMsIHBvc3NpYmx5IHBhc3NpbmcgYW55IG90aGVyIGNvbHVtbnMuIEhvd2V2ZXIsIGNvbm5lY3RpbmcgZWFjaCB0d28tY29sdW1uIHN1YnN5c3RlbSBvciBrZWVwaW5nIGVkZ2VzIGJldHdlZW4gZWFjaCBwYWlyIG9mIGFkamFjZW50IGNvbHVtbnMgdGhlIHNhbWUgaXMgbm90IG5lY2Vzc2FyeS48XC9wPlxyXG5cclxuPHA+QWxzbywgc2hlIG1heSBvbmx5IHVzZSBhIGNvbnNlY3V0aXZlIHBhcnQgb2YgY29sdW1ucyBvZiBoZXIgaW5pdGlhbCBkZXNpZ24sIHNvIHRoZSBhbnN3ZXIgZm9yIGVhY2ggZmV3ZXIgJG0kIGlzIG5lZWRlZC4gQ291bGQgeW91IGhlbHAgaGVyPzxcL3A+XHJcbiIsImlucHV0IjoiPHA+VGhlIGZpcnN0IGxpbmUgY29udGFpbnMgdGhyZWUgcG9zaXRpdmUgaW50ZWdlcnMgJG4sIE0sIGUgKDFcXGxlIG5cXGxlIDEwXjUsIDFcXGxlIE1cXGxlIDEwXjUsIDFcXGxlIGVcXGxlIDIgXFx0aW1lcyAxMF41KSQsIGRlc2NyaWJpbmcgdGhlIG51bWJlciBvZiByb3dzLCB0aGUgbWF4aW1hbCBwb3NzaWJsZSBjb2x1bW5zIGFuZCB0aGUgbnVtYmVyIG9mIGVkZ2VzIGluIGVhY2ggcGFpciBvZiBhZGphY2VudCBjb2x1bW5zLCByZXNwZWN0aXZlbHkuIFlvdSBuZWVkIHRvIGNhbGN1bGF0ZSB0aGUgYW5zd2VyIGZvciBlYWNoIHN1YnN5c3RlbSBvZiAkKG0rMSkgKDFcXGxlIG1cXGxlIE0pJCBjb2x1bW5zIHdoaWxlIHRoZSBlZGdlcyBiZXR3ZWVuIGVhY2ggcGFpciBvZiBjb2x1bW5zIHJlbWFpbi48XC9wPlxyXG5cclxuPHA+RWFjaCBvZiB0aGUgZm9sbG93aW5nICRlJCBsaW5lcyBkZXNjcmliZXMgYSBncm91cCBvZiBlZGdlcywgY29udGFpbmluZyB0aHJlZSBwb3NpdGl2ZSBpbnRlZ2VycyAkdSwgdiwgdyAoMVxcbGUgdSx2XFxsZSBuLCAxXFxsZSB3XFxsZSAzMCkkLCBtZWFuaW5nIHRoYXQgZm9yICRpID0gMSwgMiwgXFxkb3RzLCBtJCB0aGVyZSBpcyBhbiBlZGdlICQoXFxsYW5nbGUgdSxpIFxccmFuZ2xlLCBcXGxhbmdsZSB2LGkrMSBcXHJhbmdsZSlcXGluIEUkIHdpdGggYSBjb3N0IG9mICR3JC4gTm8gdHdvIGVkZ2VzIGNvbm5lY3QgdGhlIHNhbWUgcGFpciBvZiB2ZXJ0aWNlcywgYW5kIHBlb3BsZSBjYW4gdHJhdmVsIGJldHdlZW4gYW55IHBhaXIgb2YgdmVydGljZXMgaW4gdGhlIHN1YnN5c3RlbSBvZiBlYWNoICRtJC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5PdXRwdXQgJE0kIGxpbmVzLiBUaGUgJG0kLXRoIGxpbmUgY29udGFpbnMgYSBzaW5nbGUgaW50ZWdlciwgdGhlIG1pbmltdW0gdG90YWwgY29zdCBmb3IgdGhlIHN1YnN5c3RlbSBvZiAkKG0gKyAxKSQgY29sdW1ucy48XC9wPlxyXG4iLCJoaW50IjoiPHA+VGhlIHN1YnN5c3RlbXMgb2YgYWxsIHBvc3NpYmxlICRtICgxIFxcbGVxIG0gXFxsZXEgTSkkIGluIHNhbXBsZSAkMSQgYXJlIHNob3duIGJlbG93LiBUaGUgaW1hZ2VzIHNob3cgb25lIG9wdGltYWwgd2F5IHRvIGRlbGV0ZSB0aGUgcm9hZHM6IHRoZSBkZWxldGVkIHJvYWRzIGFyZSBwYWludGVkIGJsdWUgKGFzIGRhcmsgZ3JleSBpZiB0aGUgZG9jdW1lbnQgaXMgcHJpbnRlZCBpbiBibGFjayBhbmQgd2hpdGUpLCBhbmQgdGhlIG90aGVycyBhcmUgcGFpbnRlZCBvcmFuZ2UgKGFzIGxpZ2h0IGdyZXkgaWYgdGhlIGRvY3VtZW50IGlzIHByaW50ZWQgaW4gYmxhY2sgYW5kIHdoaXRlKS48XC9wPlxyXG5cclxuPHAgc3R5bGU9XCJ0ZXh0LWFsaWduOiBjZW50ZXI7XCI+PGltZyBhbHQ9XCJcIiBzcmM9XCJodHRwczpcL1wvdXBsb2FkLmFjbWljcGMubmV0XC83NzVmNzQ3NC1lNGU0LTQ0ODAtYmVhMS1kNzZjNmMyNDAwODlcLy1cL3ByZXZpZXdcL1wiIHN0eWxlPVwid2lkdGg6IDM2MnB4OyBoZWlnaHQ6IDEwMnB4O1wiIFwvPjxcL3A+XHJcbiIsIm9yaWdpbmFsIjoiMCIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiRW5nbGlzaCJ9XQ==

출처

Contest > Open Cup > 2018/2019 Season > Stage 10: Grand Prix of Xi'An A번

  • 문제를 번역한 사람: koosaga