시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
3 초 512 MB 0 0 0 0.000%

문제

You are given two sequences $a_0, a_1, \ldots, a_n$ and $b_0, b_1, \ldots, b_n$. You want to compute a new sequence $c_0, c_1, \ldots, c_n$ such that $$c_k = \left(\sum_{i = 0}^k {k \choose i} a_i b_{k-i}\right) \bmod 2^{32}\text{.}$$

Here, ${k \choose i} = \frac{k!}{i! (k - i)!}$ are binomial coefficients.

Output $c_0, c_1, \ldots, c_n$.
 

입력

The first line contains an integer $n$ ($1 \leq n \leq 2 \cdot 10^5$).

The second line contains $n + 1$ integers $a_0, a_1, \ldots, a_n$ ($0\leq a_i < 2^{32}$).

The third line contains $n + 1$ integers $b_0, b_1, \ldots, b_n$ ($0 \leq b_i < 2^{32}$).

출력

Output one line with $n + 1$ integers: $c_0, c_1, \ldots, c_n$.

예제 입력 1

5
0 1 2 3 4 5
6 7 8 9 10 11

예제 출력 1

0 6 26 84 240 640