시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
2 초 256 MB 1 1 1 100.000%

## 문제

You are given three arrays: $a$ containing $n_a$ elements, $b$ containing $n_b$ elements and $c$ containing $n_c$ elements. These arrays are sorted in non-decreasing order: that is, for every $i$ such that $1 \le i < n_a$ we have $a_i \le a_{i + 1}$, for every $j$ such that $1 \le j < n_b$ we have $b_j \le b_{j + 1}$, and for every $k$ such that $1 \le k < n_c$ we have $c_k \le c_{k + 1}$.

Your task is to calculate the number of triples $(i, j, k)$ such that $|a_i - b_j| \le d$, $|a_i - c_k| \le d$, and $|b_j - c_k| \le d$.

## 입력

The input contains one or more test cases. Each test case consists of four lines.

The first line of each test case contains four integers: $d$, $n_a$, $n_b$, and $n_c$ ($1 \le d \le 10^9$, $1 \le n_a, n_b, n_c \le 5 \cdot 10^5$).

The second line contains $n_a$ integers $a_1, a_2, \ldots, a_{n_a}$: the array $a$ ($-10^9 \le a_i \le 10^9$).

The third line contains $n_b$ integers $b_1, b_2, \ldots, b_{n_b}$: the array $b$ ($-10^9 \le b_i \le 10^9$).

The fourth line contains $n_c$ integers $c_1, c_2, \ldots, c_{n_c}$: the array $c$ ($-10^9 \le c_i \le 10^9$).

All arrays are sorted in non-decreasing order. The total sum of $n_a$ over all testcases does not exceed $5 \cdot 10^5$. The total sum of $n_b$ over all testcases does not exceed $5 \cdot 10^5$. The total sum of all $n_c$ over all testcases does not exceed $5 \cdot 10^5$. The test cases just follow one another without any special separators.

## 출력

For each test case, print a single integer: the number of triples $(i, j, k)$ such that $|a_i - b_j| \le d$, $|a_i - c_k| \le d$, and $|b_j - c_k| \le d$.

## 예제 입력 1

1 3 3 3
1 2 3
1 2 3
1 2 3
1 6 6 6
1 1 2 2 3 3
2 2 3 3 4 4
3 3 4 4 5 5


## 예제 출력 1

15
56