시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
14 초 256 MB 23 11 6 42.857%

## 문제

Professor Zhang has two sequences $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$. He wants to perform two kinds of operations on the sequences:

• "+ $l$ $r$ $x$": set $a_i$ to $x$ for all $l \le i \le r$.
• "? $l$ $r$": find the number of $i$ such that $a_i \ge b_i$ and $l \le i \le r$.

## 입력

There are multiple test cases. The first line of input contains an integer $T$ indicating the number of test cases. For each test case:

The first line contains four integers $n$, $m$, $A$ and $B$ ($1 \le n \le 10^{5}$, $1 \le m \le 3\,000\,000$, $1 \le A, B \le 2^{16}$): the length of the sequence, the number of operations and two parameters. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). The third line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 10^9$).

As the number of operations can be rather large, the $m$ operations are specified by parameters $A$ and $B$ given to the following generator routine.

int a = A, b = B, C =  (1<<31), M = (1<<16)-1;
int rnd(int last) {
a = (36969 + (last >> 3)) * (a & M) + (a >> 16);
b = (18000 + (last >> 3)) * (b & M) + (b >> 16);
return (C & ((a << 16) + b)) % 1000000000;
}


For the $i$-th operation, first call rnd$(\mathit{last})$ three times to get $l$, $r$ and $x$ (that is, $l =$rnd$(\mathit{last}) \bmod n + 1$, $r =$rnd$(\mathit{last}) \bmod n + 1$, $x =$rnd$(\mathit{last}) + 1$). Then, if $l > r$, you should swap their values. And at last, the $i$-th operation has type '?' if $(l + r + x)$ is an even number, or type '+' otherwise.

Note: $\mathit{last}$ is the answer of the latest type '?' operation. Assume $\mathit{last} = 0$ at the beginning of each test case.

There are at most $300$ test cases, and the total size of the input is at most $8$ mebibytes.

## 출력

For each test case, output the integer $S = (\sum\limits_{i = 1}^{m}{i \cdot z_i}) \bmod (10^9 + 7)$, where $z_i$ is the answer for $i$-th query. If the $i$-th query is of type '+', assume $z_i = 0$.

## 예제 입력 1

3
5 10 1 2
5 4 3 2 1
1 2 3 4 5
5 10 3 4
5 4 4 2 1
1 2 3 4 5
5 10 5 6
5 4 5 2 1
1 2 2 4 5


## 예제 출력 1

81
88
87