시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 256 MB 22 12 11 64.706%

문제

A sequence $S$ of positive integers is a composite sequence if and only if there is a non-empty subsequence $T$ of $S$ such that the sum of all integers in $T$ is a composite number.

Given $S$, your task is to check whether $S$ is a composite sequence.

Note that $1$ is not a composite number.

Recall that $T$ is a subsequence of $S$ if and only if we can obtain $T$ by removing some elements of $S$ (possibly none or all).

입력

The first line contains a single integer $n$ ($1 \le n \le 10^5$), the size of $S$.

The second line contains $n$ integers $S_1, S_2, \ldots, S_n$: the elements of $S$ ($1 \le S_i \le 10^9$).

출력

If $S$ is a composite sequence, output "Yes". Otherwise, output "No".

예제 입력 1

2
5 7

예제 출력 1

Yes

예제 입력 2

1
97

예제 출력 2

No