시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
4 초 512 MB 3 2 2 100.000%

## 문제

Given an $n \times m$ integer matrix $A$, a local maximum of $A$ is a location $(i, j)$ ($1 \le i \le n$ and $1 \le j \le m$) such that $A_{i, j}$ is no smaller than any other integer on the $i$-th row or on the $j$-th column.

For example, in the $3 \times 3$ matrix $$\begin{bmatrix} 2 & 5 & 4 \\ 2 & 1 & 6 \\ 2 & 2 & 2 \end{bmatrix}\text{,}$$ there are three local maxima: locations $(1, 2)$, $(2, 3)$, and $(3, 1)$ with values $5$, $6$, and $2$, repectively.

An $n \times m$ integer matrix $A$ is good if and only if it satisfies the following two conditions:

• There is exactly one local maximum in $A$.
• Each integer from $1$ to $n \times m$ occurs exactly once in $A$.

Given $n$, $m$, and a prime number $P$, your task is to count the number of good matrices of size $n \times m$ modulo $P$.

## 입력

The first line contains three integers, $n$, $m$, and $P$, where $1 \le n, m \le 3000$ and $10^8 \le P \le 10^9 + 7$. It is guaranteed that $P$ is prime.

## 출력

Output a single line with a single integer: the number of good matrices modulo $P$.

## 예제 입력 1

2 2 1000000007


## 예제 출력 1

16


## 예제 입력 2

4 3 1000000007


## 예제 출력 2

95800320


## 예제 입력 3

100 100 998244353


## 예제 출력 3

848530760