시간 제한 | 메모리 제한 | 제출 | 정답 | 맞힌 사람 | 정답 비율 |
---|---|---|---|---|---|
10 초 | 512 MB | 14 | 8 | 5 | 62.500% |
This problem might be well-known in some countries, but how do other countries learn about such problems if nobody poses them?
You are given a non-decreasing positive integer sequence $A = (A_1, A_2, \ldots, A_N)$ of length $N$. For each $k=0,1,2,\ldots,N$, count the number of non-decreasing non-negative integer sequences $x = (x_1, x_2, \ldots, x_N)$ of length $N$ that satisfy following conditions, modulo $998244353$:
The first line contains an integer $N$ ($1 \leq N \leq 250000$).
The second line contains $N$ integers $A_1,A_2,\ldots,A_N$ ($1 \leq A_1 \leq A_2 \leq \cdots \leq A_N \leq 250000$).
For each $k=0,1,2,\ldots,N$, print the answer.
3 1 2 3
5 5 3 1
4 3 3 3 3
15 10 6 3 1
5 10 10 11 11 12
3982 1285 352 77 12 1