시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 512 MB 3 3 3 100.000%

## 문제

Stern’s Triangle is similar to Pascal’s Triangle in that some values in each row are the sums of values in the previous row. In this case the previous row values are also copied down:

                                                              1
1                               1                               1
1               1               2               1               2               1               1
1       1       2       1       3       2       3       1       3       2       3       1       2       1       1
1   1   2   1   3   2   3   1   4   3   5   2   5   3   4   1   4   3   5   2   5   3   4   1   3   2   3   1   2   1   1
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1

Row n has 2n - 1 elements S(n, k). Where:

• S(n, k) = 0 for k ≤ 0 or k ≥ 2n
• S(1, 1) = 1
• S(n+1, 2*k) = S(n, k) for n ≥ 1
• S(n+1, 2*k+1) = S(n, k) + S(n, k+1)

If we align the S(n, k) values so S(n+1, k) is directly below S(n, k), we get:

1
1 1 1
1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1


We see that for n sufficiently large, S(n+1, k) = S(n, k).

The sequence of these limiting values in called Stern’s Diatomic Sequnce:

b(1), b(2), b(3), …

It has the property that for every positve rational number, r, there is exactly one value k for which r = b(k)/b(k+1).

For example: 3 / 5 = b(10) / b(11)

Write a program which takes as input a rational number p/q in lowest terms and outputs the value k for which p = b(k) and q = p(k+1). This number can get quite large, so out put it modulo the large prime 998,244,353.

## 입력

Input consists of a single line containing two relatively prime, space separated decimal integers, p and q (1 ≤ p, q ≤ 400000).

## 출력

The single output line consists of the integer k, for which p = b(k) and q = b(k+1) printed modulo 998,244,353.

## 예제 입력 1

3 5


## 예제 출력 1

10


## 예제 입력 2

1234 763


## 예제 출력 2

525909