시간 제한메모리 제한제출정답맞힌 사람정답 비율
8 초 1024 MB44101027.778%

문제

오래된 컴퓨터에서 그림판을 사용하고 있다. 그림판의 화면은 픽셀이라 부르는 칸을 가진 격자 모양이다. 가장 왼쪽 아래 픽셀의 좌표를 $(1, 1)$로 하고, 오른쪽으로 $a$번째 위쪽으로 $b$번째 픽셀의 좌표를 $(a, b)$로 한다. 초기 화면에는 수직, 수평 변을 가진  $N$개의 직사각형들이 그려져 있다. 직사각형은 이 구역안에 포함된 픽셀들로 표현된다. 

$N$개의 직사각형에 $M$개의 이동 명령이 수행될 것이다. 직사각형의 이동은 동, 서, 남, 북의 4방향과 북동, 북서, 남동, 남서(수평축과 45도 방향) 4방향으로 이루어진다. 또한 이동 거리 $d$가 주어진다. 다시 말해서, 이동 명령은 방향과 거리로 주어진다. 구체적으로, 직사각형의 가장 왼쪽, 아래 모서리 픽셀의 좌표가 $(a, b)$라 하면, 동, 북, 서, 남 방향으로 거리 $d$만큼의 이동은 모서리가 각각 $(a+d, b)$, $(a, b+d)$, $(a-d, b)$, $(a, b-d)$가 된다. 또한 북동, 북서, 남서, 남동 방향으로 거리 $d$만큼의 이동은 각각 $(a+d, b+d)$, $(a-d, b+d)$, $(a-d, b-d)$, $(a+d, b-d)$가 된다 (그림 1).

           

그림 1

화면에서 직사각형 $R$의 거리 $d$만큼 이동은 초기 위치를 포함해서 $R$이 거리 1 만큼 이동할 때마다 $R$의 모습을 순서대로 빠르게 나타냄으로서 구현된다. 하지만 우리의 컴퓨터는 아주 오래 되어서 $R$의 이동 시 렉이 심하게 걸린다. 결과적으로 $R$의 이동에서 그리게 되는 모든 $R$의 모습이 화면에 그대로 남아있게 된다. 따라서 $R$이 거리 $d$만큼 이동하면, $d$개의 직사각형들이 새롭게 화면에 만들어진다. 예를 들어, 아래 그림 2에서 직사각형이 북동방향으로 거리 3만큼 이동하면, 3개의 직사각형들이 만들어져서 총 4개의 직사각형이 화면 위에 남게 된다. 물론, 이동 후에는 북동 방향 끝에 있는 직사각형이 $R$ 이 된다.

그림 2

$M$개의 이동 명령을 수행한 후 $Q$개의 질의가 주어질 것이다. 각 질의는 평면 상의 픽셀 $p$로 주어진다. 질의에 대한 대답으로 픽셀 $p$를 포함하는 직사각형들의 개수를 출력한다.  

입력

첫째 줄에 공백으로 구분된 세 정수 $N$, $M$, $Q$가 주어진다.

다음 $N$개의 줄에는 공백으로 구분된 네 개의 정수 $x_1$, $y_1$, $x_2$, $y_2$가 주어지며, 직사각형의 가장 왼쪽 아래 픽셀의 좌표가 $(x_1, y_1)$, 가장 오른쪽 위 픽셀의 좌표가 $(x_2, y_2)$임을 의미한다. 직사각형은 $1$부터 $N$의 정수로 나타내며, $1$번 직사각형부터 순서대로 주어진다.

다음 $M$개의 줄에는 공백으로 구분된 세 개의 정수 $v_i$, $x_i$, $d_i$가 주어진다. $x_i$번째 직사각형이 $v_i$ 방향으로 $d_i$만큼 이동함을 나타낸다. $v_i$의 값은 다음과 같다.

  • 0: $(+1, 0)$
  • 1: $(+1, +1)$ 
  • 2: $(0, +1)$
  • 3: $(-1, +1)$ 
  • 4: $(-1, 0)$
  • 5: $(-1, -1)$ 
  • 6: $(0, -1)$
  • 7: $(+1, -1)$ 

다음 $Q$개의 줄에는 공백으로 구분된 두 정수 $x$, $y$가 주어지며, 질의에 해당하는 평면 상의 픽셀 $p$의 좌표 $(x, y)$를 나타낸다.

출력

각각의 질의마다 질의의 픽셀 $p$를 포함하는 직사각형들의 개수를 출력한다. $i$번째 줄에는 $i$번 질의의 결과를 출력해야 한다. ($0 ≤ i ≤ Q-1$)

제한

  • $1 \le N \le 250,000$
  • $0 \le M \le 250,000$
  • $1 \le Q \le 250,000$
  • $1 \le x_1 \le x_2 \le 250,000$
  • $1 \le y_1 \le y_2 \le 250,000$
  • $0 \le v_i \le 7$
  • $1 \le x_i \le N$
  • $1 \le d_i \le 250,000$
  • 화면의 좌표 값은 $1$이상 $250,000$이하이다. 임의의 직사각형에 포함되는 모든 픽셀들의 좌표값이 항상 이 범위안에 있다. 이는 이동이 일어난 이후에도 만족한다. 쿼리로 주어지는 픽셀 역시 이 조건을 만족한다.

서브태스크

번호배점제한
18

$N \le 100, M = 0$

28

$M = 0$

311

$M \le 100$

413

$v_i \in \{0, 2, 4, 6\}$ ($0 \le i \le M-1$). 즉, 직사각형은 상하좌우로만 움직인다.

512

$x_1 = x_2, y_1 = y_2$

648

추가적인 제약 조건이 없다.

예제 입력 1

1 8 3
2 1 2 1
0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
1 1
2 1
4 2

예제 출력 1

0
2
1

예제 입력 2

2 0 3
3 3 7 7
4 4 6 6
5 5
3 7
8 8

예제 출력 2

2
1
0
W3sicHJvYmxlbV9pZCI6IjIyMDI4IiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHViODA5IiwiZGVzY3JpcHRpb24iOiI8cD5cdWM2MjRcdWI3OThcdWI0MWMgXHVjZWY0XHVkNGU4XHVkMTMwXHVjNWQwXHVjMTFjIFx1YWRmOFx1YjliY1x1ZDMxMFx1Yzc0NCBcdWMwYWNcdWM2YTlcdWQ1NThcdWFjZTAgXHVjNzg4XHViMmU0LiBcdWFkZjhcdWI5YmNcdWQzMTBcdWM3NTggXHVkNjU0XHViYTc0XHVjNzQwIFx1ZDUzZFx1YzE0MFx1Yzc3NFx1Yjc3YyBcdWJkODBcdWI5NzRcdWIyOTQgXHVjZTc4XHVjNzQ0IFx1YWMwMFx1YzljNCBcdWFjYTlcdWM3OTAgXHViYWE4XHVjNTkxXHVjNzc0XHViMmU0LiBcdWFjMDBcdWM3YTUgXHVjNjdjXHVjYWJkIFx1YzU0NFx1Yjc5OCBcdWQ1M2RcdWMxNDBcdWM3NTggXHVjODhjXHVkNDVjXHViOTdjICQoMSwgMSkkXHViODVjIFx1ZDU1OFx1YWNlMCwgXHVjNjI0XHViOTc4XHVjYWJkXHVjNzNjXHViODVjICRhJFx1YmM4OFx1YzlmOCBcdWM3MDRcdWNhYmRcdWM3M2NcdWI4NWMgJGIkXHViYzg4XHVjOWY4IFx1ZDUzZFx1YzE0MFx1Yzc1OCBcdWM4OGNcdWQ0NWNcdWI5N2MgJChhLCBiKSRcdWI4NWMgXHVkNTVjXHViMmU0LiBcdWNkMDhcdWFlMzAgXHVkNjU0XHViYTc0XHVjNWQwXHViMjk0IFx1YzIxOFx1YzljMSwgXHVjMjE4XHVkM2M5IFx1YmNjMFx1Yzc0NCBcdWFjMDBcdWM5YzQgJm5ic3A7JE4kXHVhYzFjXHVjNzU4IFx1YzljMVx1YzBhY1x1YWMwMVx1ZDYxNVx1YjRlNFx1Yzc3NCBcdWFkZjhcdWI4MjRcdWM4MzggXHVjNzg4XHViMmU0LiBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NDAgXHVjNzc0IFx1YWQ2Y1x1YzVlZFx1YzU0OFx1YzVkMCBcdWQzZWNcdWQ1NjhcdWI0MWMgXHVkNTNkXHVjMTQwXHViNGU0XHViODVjIFx1ZDQ1Y1x1ZDYwNFx1YjQxY1x1YjJlNC4mbmJzcDs8XC9wPlxyXG5cclxuPHA+JE4kXHVhYzFjXHVjNzU4IFx1YzljMVx1YzBhY1x1YWMwMVx1ZDYxNVx1YzVkMCAkTSRcdWFjMWNcdWM3NTggXHVjNzc0XHViM2Q5IFx1YmE4NVx1YjgzOVx1Yzc3NCBcdWMyMThcdWQ1ODlcdWI0MjAgXHVhYzgzXHVjNzc0XHViMmU0LiBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NTggXHVjNzc0XHViM2Q5XHVjNzQwIFx1YjNkOSwgXHVjMTFjLCBcdWIwYTgsIFx1YmQ4MVx1Yzc1OCA0XHViYzI5XHVkNWE1XHVhY2ZjIFx1YmQ4MVx1YjNkOSwgXHViZDgxXHVjMTFjLCBcdWIwYThcdWIzZDksIFx1YjBhOFx1YzExYyhcdWMyMThcdWQzYzlcdWNkOTVcdWFjZmMgNDVcdWIzYzQgXHViYzI5XHVkNWE1KSA0XHViYzI5XHVkNWE1XHVjNzNjXHViODVjIFx1Yzc3NFx1YjhlOFx1YzViNFx1YzljNFx1YjJlNC4gXHViNjEwXHVkNTVjIFx1Yzc3NFx1YjNkOSBcdWFjNzBcdWI5YWMgJGQkXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gXHViMmU0XHVjMmRjIFx1YjlkMFx1ZDU3NFx1YzExYywgXHVjNzc0XHViM2Q5IFx1YmE4NVx1YjgzOVx1Yzc0MCBcdWJjMjlcdWQ1YTVcdWFjZmMgXHVhYzcwXHViOWFjXHViODVjIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gXHVhZDZjXHVjY2I0XHVjODAxXHVjNzNjXHViODVjLCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NTggXHVhYzAwXHVjN2E1IFx1YzY3Y1x1Y2FiZCwgXHVjNTQ0XHViNzk4IFx1YmFhOFx1YzExY1x1YjlhYyBcdWQ1M2RcdWMxNDBcdWM3NTggXHVjODhjXHVkNDVjXHVhYzAwICQoYSwgYikkXHViNzdjIFx1ZDU1OFx1YmE3NCwgXHViM2Q5LCBcdWJkODEsIFx1YzExYywgXHViMGE4IFx1YmMyOVx1ZDVhNVx1YzczY1x1Yjg1YyBcdWFjNzBcdWI5YWMgJGQkXHViOWNjXHVkMDdjXHVjNzU4IFx1Yzc3NFx1YjNkOVx1Yzc0MCBcdWJhYThcdWMxMWNcdWI5YWNcdWFjMDAgXHVhYzAxXHVhYzAxICQoYStkLCBiKSQsICQoYSwgYitkKSQsICQoYS1kLCBiKSQsICQoYSwgYi1kKSRcdWFjMDAgXHViNDFjXHViMmU0LiBcdWI2MTBcdWQ1NWMgXHViZDgxXHViM2Q5LCBcdWJkODFcdWMxMWMsIFx1YjBhOFx1YzExYywgXHViMGE4XHViM2Q5IFx1YmMyOVx1ZDVhNVx1YzczY1x1Yjg1YyBcdWFjNzBcdWI5YWMgJGQkXHViOWNjXHVkMDdjXHVjNzU4IFx1Yzc3NFx1YjNkOVx1Yzc0MCBcdWFjMDFcdWFjMDEgJChhK2QsIGIrZCkkLCAkKGEtZCwgYitkKSQsICQoYS1kLCBiLWQpJCwgJChhK2QsIGItZCkkXHVhYzAwIFx1YjQxY1x1YjJlNCAoPHN0cm9uZz5cdWFkZjhcdWI5YmMgMTxcL3N0cm9uZz4pLjxcL3A+XHJcblxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlcjtcIj48aW1nIGFsdD1cIlwiIHNyYz1cImh0dHBzOlwvXC91cGxvYWQuYWNtaWNwYy5uZXRcL2IzNjc0NmJjLTI2MWEtNDJhZC1iOWRhLTMxZWU3MWYwYTEzZVwvLVwvcHJldmlld1wvXCIgc3R5bGU9XCJ3aWR0aDogMjc1cHg7IGhlaWdodDogMjkxcHg7XCIgXC8+Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs8aW1nIGFsdD1cIlwiIHNyYz1cImh0dHBzOlwvXC91cGxvYWQuYWNtaWNwYy5uZXRcLzBmOGJiMDNhLWJmY2ItNDJmNS05MGQ5LTJjNjUzYzdiNzUwYlwvLVwvcHJldmlld1wvXCIgc3R5bGU9XCJ3aWR0aDogMjcwcHg7IGhlaWdodDogMjkwcHg7XCIgXC8+PFwvcD5cclxuXHJcbjxwIHN0eWxlPVwidGV4dC1hbGlnbjogY2VudGVyO1wiPjxzdHJvbmc+XHVhZGY4XHViOWJjIDE8XC9zdHJvbmc+PFwvcD5cclxuXHJcbjxwPlx1ZDY1NFx1YmE3NFx1YzVkMFx1YzExYyBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTUgJFIkXHVjNzU4IFx1YWM3MFx1YjlhYyAkZCRcdWI5Y2NcdWQwN2MgXHVjNzc0XHViM2Q5XHVjNzQwIFx1Y2QwOFx1YWUzMCBcdWM3MDRcdWNlNThcdWI5N2MgXHVkM2VjXHVkNTY4XHVkNTc0XHVjMTFjICRSJFx1Yzc3NCBcdWFjNzBcdWI5YWMgMSBcdWI5Y2NcdWQwN2MgXHVjNzc0XHViM2Q5XHVkNTYwIFx1YjU0Y1x1YjljOFx1YjJlNCAkUiRcdWM3NTggXHViYWE4XHVjMmI1XHVjNzQ0IFx1YzIxY1x1YzExY1x1YjMwMFx1Yjg1YyBcdWJlNjBcdWI5NzRcdWFjOGMgXHViMDk4XHVkMGMwXHViMGM0XHVjNzNjXHViODVjXHVjMTFjIFx1YWQ2Y1x1ZDYwNFx1YjQxY1x1YjJlNC4gXHVkNTU4XHVjOWMwXHViOWNjIFx1YzZiMFx1YjlhY1x1Yzc1OCBcdWNlZjRcdWQ0ZThcdWQxMzBcdWIyOTQgXHVjNTQ0XHVjOGZjIFx1YzYyNFx1Yjc5OCBcdWI0MThcdWM1YjRcdWMxMWMgJFIkXHVjNzU4IFx1Yzc3NFx1YjNkOSBcdWMyZGMgXHViODA5XHVjNzc0IFx1YzJlY1x1ZDU1OFx1YWM4YyBcdWFjNzhcdWI5YjBcdWIyZTQuIFx1YWNiMFx1YWNmY1x1YzgwMVx1YzczY1x1Yjg1YyAkUiRcdWM3NTggXHVjNzc0XHViM2Q5XHVjNWQwXHVjMTFjIFx1YWRmOFx1YjlhY1x1YWM4YyBcdWI0MThcdWIyOTQgXHViYWE4XHViNGUwICRSJFx1Yzc1OCBcdWJhYThcdWMyYjVcdWM3NzQgXHVkNjU0XHViYTc0XHVjNWQwIFx1YWRmOFx1YjMwMFx1Yjg1YyBcdWIwYThcdWM1NDRcdWM3ODhcdWFjOGMgXHViNDFjXHViMmU0LiBcdWI1MzBcdWI3N2NcdWMxMWMgJFIkXHVjNzc0IFx1YWM3MFx1YjlhYyAkZCRcdWI5Y2NcdWQwN2MgXHVjNzc0XHViM2Q5XHVkNTU4XHViYTc0LCAkZCRcdWFjMWNcdWM3NTggXHVjOWMxXHVjMGFjXHVhYzAxXHVkNjE1XHViNGU0XHVjNzc0IFx1YzBjOFx1Yjg2ZFx1YWM4YyBcdWQ2NTRcdWJhNzRcdWM1ZDAgXHViOWNjXHViNGU0XHVjNWI0XHVjOWM0XHViMmU0LiBcdWM2MDhcdWI5N2MgXHViNGU0XHVjNWI0LCBcdWM1NDRcdWI3OTggPHN0cm9uZz5cdWFkZjhcdWI5YmMgMjxcL3N0cm9uZz5cdWM1ZDBcdWMxMWMgXHVjOWMxXHVjMGFjXHVhYzAxXHVkNjE1XHVjNzc0IFx1YmQ4MVx1YjNkOVx1YmMyOVx1ZDVhNVx1YzczY1x1Yjg1YyBcdWFjNzBcdWI5YWMgM1x1YjljY1x1ZDA3YyBcdWM3NzRcdWIzZDlcdWQ1NThcdWJhNzQsIDNcdWFjMWNcdWM3NTggXHVjOWMxXHVjMGFjXHVhYzAxXHVkNjE1XHViNGU0XHVjNzc0IFx1YjljY1x1YjRlNFx1YzViNFx1YzgzOFx1YzExYyBcdWNkMWQgNFx1YWMxY1x1Yzc1OCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NzQgXHVkNjU0XHViYTc0IFx1YzcwNFx1YzVkMCBcdWIwYThcdWFjOGMgXHViNDFjXHViMmU0LiBcdWJiM2NcdWI4NjAsIFx1Yzc3NFx1YjNkOSBcdWQ2YzRcdWM1ZDBcdWIyOTQgXHViZDgxXHViM2Q5IFx1YmMyOVx1ZDVhNSBcdWIwNWRcdWM1ZDAgXHVjNzg4XHViMjk0IFx1YzljMVx1YzBhY1x1YWMwMVx1ZDYxNVx1Yzc3NCAkUiQgXHVjNzc0IFx1YjQxY1x1YjJlNC48XC9wPlxyXG5cclxuPHAgc3R5bGU9XCJ0ZXh0LWFsaWduOiBjZW50ZXI7XCI+PGltZyBhbHQ9XCJcIiBzcmM9XCJodHRwczpcL1wvdXBsb2FkLmFjbWljcGMubmV0XC8wNjNlMTdlMi02YmYwLTQ3N2MtYWI2OS05Yjc1MmM2ZWRlYWRcLy1cL3ByZXZpZXdcL1wiIHN0eWxlPVwid2lkdGg6IDE0MHB4OyBoZWlnaHQ6IDE1OHB4O1wiIFwvPjxcL3A+XHJcblxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlcjtcIj48c3Ryb25nPlx1YWRmOFx1YjliYyAyPFwvc3Ryb25nPjxcL3A+XHJcblxyXG48cD4kTSRcdWFjMWNcdWM3NTggXHVjNzc0XHViM2Q5IFx1YmE4NVx1YjgzOVx1Yzc0NCBcdWMyMThcdWQ1ODlcdWQ1NWMgXHVkNmM0ICRRJFx1YWMxY1x1Yzc1OCBcdWM5YzhcdWM3NThcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM4IFx1YWM4M1x1Yzc3NFx1YjJlNC4gXHVhYzAxIFx1YzljOFx1Yzc1OFx1YjI5NCBcdWQzYzlcdWJhNzQgXHVjMGMxXHVjNzU4IFx1ZDUzZFx1YzE0MCAkcCRcdWI4NWMgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWM5YzhcdWM3NThcdWM1ZDAgXHViMzAwXHVkNTVjIFx1YjMwMFx1YjJmNVx1YzczY1x1Yjg1YyBcdWQ1M2RcdWMxNDAgJHAkXHViOTdjIFx1ZDNlY1x1ZDU2OFx1ZDU1OFx1YjI5NCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWI0ZTRcdWM3NTggXHVhYzFjXHVjMjE4XHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU1Y1x1YjJlNC4gJm5ic3A7PFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cdWNjYWJcdWM5ZjggXHVjOTA0XHVjNWQwIFx1YWNmNVx1YmMzMVx1YzczY1x1Yjg1YyBcdWFkNmNcdWJkODRcdWI0MWMgXHVjMTM4IFx1YzgxNVx1YzIxOCAkTiQsICRNJCwgJFEkXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViMmU0XHVjNzRjICROJFx1YWMxY1x1Yzc1OCBcdWM5MDRcdWM1ZDBcdWIyOTQgXHVhY2Y1XHViYzMxXHVjNzNjXHViODVjIFx1YWQ2Y1x1YmQ4NFx1YjQxYyBcdWIxMjQgXHVhYzFjXHVjNzU4IFx1YzgxNVx1YzIxOCZuYnNwOyR4XzEkLCAkeV8xJCwgJHhfMiQsICR5XzIkXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljMFx1YmE3MCwgXHVjOWMxXHVjMGFjXHVhYzAxXHVkNjE1XHVjNzU4IFx1YWMwMFx1YzdhNSBcdWM2N2NcdWNhYmQgXHVjNTQ0XHViNzk4IFx1ZDUzZFx1YzE0MFx1Yzc1OCBcdWM4OGNcdWQ0NWNcdWFjMDAmbmJzcDskKHhfMSwgeV8xKSQsIFx1YWMwMFx1YzdhNSBcdWM2MjRcdWI5NzhcdWNhYmQgXHVjNzA0IFx1ZDUzZFx1YzE0MFx1Yzc1OCBcdWM4OGNcdWQ0NWNcdWFjMDAmbmJzcDskKHhfMiwgeV8yKSRcdWM3ODRcdWM3NDQgXHVjNzU4XHViYmY4XHVkNTVjXHViMmU0LiBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NDAgJDEkXHViZDgwXHVkMTMwICROJFx1Yzc1OCBcdWM4MTVcdWMyMThcdWI4NWMgXHViMDk4XHVkMGMwXHViMGI0XHViYTcwLCAkMSRcdWJjODggXHVjOWMxXHVjMGFjXHVhYzAxXHVkNjE1XHViZDgwXHVkMTMwIFx1YzIxY1x1YzExY1x1YjMwMFx1Yjg1YyBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YjJlNFx1Yzc0YyAkTSRcdWFjMWNcdWM3NTggXHVjOTA0XHVjNWQwXHViMjk0IFx1YWNmNVx1YmMzMVx1YzczY1x1Yjg1YyBcdWFkNmNcdWJkODRcdWI0MWMgXHVjMTM4IFx1YWMxY1x1Yzc1OCBcdWM4MTVcdWMyMTgmbmJzcDskdl9pJCwgJHhfaSQsICRkX2kkXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gXGIkeF9pJFx1YmM4OFx1YzlmOCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NzQgJHZfaSQgXHViYzI5XHVkNWE1XHVjNzNjXHViODVjICRkX2kkXHViOWNjXHVkMDdjIFx1Yzc3NFx1YjNkOVx1ZDU2OFx1Yzc0NCBcdWIwOThcdWQwYzBcdWIwYjhcdWIyZTQuICR2X2kkXHVjNzU4IFx1YWMxMlx1Yzc0MCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHViMmU0LjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPjA6ICQoKzEsIDApJDxcL2xpPlxyXG5cdDxsaT4xOiAkKCsxLCArMSkkJm5ic3A7PFwvbGk+XHJcblx0PGxpPjI6ICQoMCwgKzEpJDxcL2xpPlxyXG5cdDxsaT4zOiAkKC0xLCArMSkkJm5ic3A7PFwvbGk+XHJcblx0PGxpPjQ6ICQoLTEsIDApJDxcL2xpPlxyXG5cdDxsaT41OiAkKC0xLCAtMSkkJm5ic3A7PFwvbGk+XHJcblx0PGxpPjY6ICQoMCwgLTEpJDxcL2xpPlxyXG5cdDxsaT43OiAkKCsxLCAtMSkkJm5ic3A7PFwvbGk+XHJcbjxcL3VsPlxyXG5cclxuPHA+XHViMmU0XHVjNzRjICRRJFx1YWMxY1x1Yzc1OCBcdWM5MDRcdWM1ZDBcdWIyOTQgXHVhY2Y1XHViYzMxXHVjNzNjXHViODVjIFx1YWQ2Y1x1YmQ4NFx1YjQxYyBcdWI0NTAgXHVjODE1XHVjMjE4ICR4JCwgJHkkXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljMFx1YmE3MCwgXHVjOWM4XHVjNzU4XHVjNWQwIFx1ZDU3NFx1YjJmOVx1ZDU1OFx1YjI5NCBcdWQzYzlcdWJhNzQgXHVjMGMxXHVjNzU4IFx1ZDUzZFx1YzE0MCAkcCRcdWM3NTggXHVjODhjXHVkNDVjICQoeCwgeSkkXHViOTdjIFx1YjA5OFx1ZDBjMFx1YjBiOFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWFjMDFcdWFjMDFcdWM3NTggXHVjOWM4XHVjNzU4XHViOWM4XHViMmU0IFx1YzljOFx1Yzc1OFx1Yzc1OCBcdWQ1M2RcdWMxNDAgJHAkXHViOTdjIFx1ZDNlY1x1ZDU2OFx1ZDU1OFx1YjI5NCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWI0ZTRcdWM3NTggXHVhYzFjXHVjMjE4XHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU1Y1x1YjJlNC4gJGkkXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCAkaSRcdWJjODggXHVjOWM4XHVjNzU4XHVjNzU4IFx1YWNiMFx1YWNmY1x1Yjk3YyBcdWNkOWNcdWI4MjVcdWQ1NzRcdWM1N2MgXHVkNTVjXHViMmU0LiAoJDAgJmxlOyBpICZsZTsgUS0xJCk8XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJLb3JlYW4iLCJsaW1pdCI6Ijx1bD5cclxuXHQ8bGk+JDEgXFxsZSBOIFxcbGUgMjUwLDAwMCQ8XC9saT5cclxuXHQ8bGk+JDAgXFxsZSBNIFxcbGUgMjUwLDAwMCQ8XC9saT5cclxuXHQ8bGk+JDEgXFxsZSBRIFxcbGUgMjUwLDAwMCQ8XC9saT5cclxuXHQ8bGk+JDEgXFxsZSB4XzEgXFxsZSB4XzIgXFxsZSAyNTAsMDAwJDxcL2xpPlxyXG5cdDxsaT4kMSBcXGxlIHlfMSBcXGxlIHlfMiBcXGxlIDI1MCwwMDAkPFwvbGk+XHJcblx0PGxpPiQwIFxcbGUgdl9pIFxcbGUgNyQ8XC9saT5cclxuXHQ8bGk+JDEgXFxsZSB4X2kgXFxsZSBOJDxcL2xpPlxyXG5cdDxsaT4kMSBcXGxlIGRfaSBcXGxlIDI1MCwwMDAkPFwvbGk+XHJcblx0PGxpPlx1ZDY1NFx1YmE3NFx1Yzc1OCBcdWM4OGNcdWQ0NWMgXHVhYzEyXHVjNzQwICQxJFx1Yzc3NFx1YzBjMSAkMjUwLDAwMCRcdWM3NzRcdWQ1NThcdWM3NzRcdWIyZTQuIFx1Yzc4NFx1Yzc1OFx1Yzc1OCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM1ZDAgXHVkM2VjXHVkNTY4XHViNDE4XHViMjk0IFx1YmFhOFx1YjRlMCBcdWQ1M2RcdWMxNDBcdWI0ZTRcdWM3NTggXHVjODhjXHVkNDVjXHVhYzEyXHVjNzc0IFx1ZDU2ZFx1YzBjMSBcdWM3NzQgXHViYzk0XHVjNzA0XHVjNTQ4XHVjNWQwIFx1Yzc4OFx1YjJlNC4gXHVjNzc0XHViMjk0IFx1Yzc3NFx1YjNkOVx1Yzc3NCBcdWM3N2NcdWM1YjRcdWIwOWMgXHVjNzc0XHVkNmM0XHVjNWQwXHViM2M0IFx1YjljY1x1Yzg3MVx1ZDU1Y1x1YjJlNC4gXHVjZmZjXHViOWFjXHViODVjIFx1YzhmY1x1YzViNFx1YzljMFx1YjI5NCBcdWQ1M2RcdWMxNDAgXHVjNWVkXHVjMmRjIFx1Yzc3NCBcdWM4NzBcdWFjNzRcdWM3NDQgXHViOWNjXHVjODcxXHVkNTVjXHViMmU0LjxcL2xpPlxyXG48XC91bD5cclxuIiwic3VidGFzazEiOiI8cD4kTiBcXGxlIDEwMCwgTSA9IDAkPFwvcD5cclxuIiwic3VidGFzazIiOiI8cD4kTSA9IDAkPFwvcD5cclxuIiwic3VidGFzazMiOiI8cD4kTSBcXGxlIDEwMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrNCI6IjxwPiR2X2kgXFxpbiBcXHswLCAyLCA0LCA2XFx9JCAoJDAgXFxsZSBpIFxcbGUgTS0xJCkuJm5ic3A7XHVjOTg5LCBcdWM5YzFcdWMwYWNcdWFjMDFcdWQ2MTVcdWM3NDAgXHVjMGMxXHVkNTU4XHVjODhjXHVjNmIwXHViODVjXHViOWNjIFx1YzZjMFx1YzljMVx1Yzc3OFx1YjJlNC48XC9wPlxyXG4iLCJzdWJ0YXNrNSI6IjxwPiR4XzEgPSB4XzIsIHlfMSA9IHlfMiQ8XC9wPlxyXG4iLCJzdWJ0YXNrNiI6IjxwPlx1Y2Q5NFx1YWMwMFx1YzgwMVx1Yzc3OCBcdWM4MWNcdWM1N2QgXHVjODcwXHVhYzc0XHVjNzc0IFx1YzVjNlx1YjJlNC48XC9wPlxyXG4ifSx7InByb2JsZW1faWQiOiIyMjAyOCIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IkxhZyIsImRlc2NyaXB0aW9uIjoiPHAgc3R5bGU9XCJ0ZXh0LWFsaWduOiBjZW50ZXI7XCI+PGltZyBhbHQ9XCJcIiBzcmM9XCJodHRwczpcL1wvdXBsb2FkLmFjbWljcGMubmV0XC9hMTAwNTBiZS1jOGU2LTQzMGItOTAzZi1lZmE2MjEzNDdjZTNcLy1cL3ByZXZpZXdcL1wiIHN0eWxlPVwid2lkdGg6IDU1MHB4OyBoZWlnaHQ6IDQ2M3B4O1wiIFwvPjxcL3A+XHJcblxyXG48cD5Zb3UgYXJlIHVzaW5nIFBhaW50IG9uIGFuIG9sZCBjb21wdXRlci4gVGhlIHNjcmVlbiBvZiBQYWludCBpcyBhIGdyaWQgd2l0aCBjZWxscyBjYWxsZWQgcGl4ZWxzLiBMZXQgdGhlIGNvb3JkaW5hdGVzIG9mIHRoZSBsb3dlci1sZWZ0IHBpeGVsIGJlICQoMSwgMSkkLCBhbmQgdGhlIGNvb3JkaW5hdGVzIG9mIHRoZSAkYSR0aCBwaXhlbCBmcm9tIHRoZSBsZWZ0IGFuZCB0aGUgJGIkdGggcGl4ZWwgZnJvbSB0aGUgYm90dG9tIGFyZSAkKGEsIGIpJC4gT24gdGhlIGluaXRpYWwgc2NyZWVuLCAkTiQgcmVjdGFuZ2xlcyB3aXRoIHZlcnRpY2FsIGFuZCBob3Jpem9udGFsIHNpZGVzIGFyZSBkcmF3bi4gQSByZWN0YW5nbGUgaXMgcmVwcmVzZW50ZWQgYnkgcGl4ZWxzIGNvbnRhaW5lZCB3aXRoaW4gdGhpcyBhcmVhLjxcL3A+XHJcblxyXG48cD4kTSQgbW92ZSBjb21tYW5kcyB3aWxsIGJlIHBlcmZvcm1lZCBvbiAkTiQgcmVjdGFuZ2xlcy4gVGhlIG1vdmVtZW50IG9mIHRoZSByZWN0YW5nbGUgYXJlIHJlcHJlc2VudGVkIGJ5IHRoZSBwYWlyIG9mIGRpcmVjdGlvbiBhbmQgZGlzdGFuY2UuIFRoZSBkaXJlY3Rpb25zIGFyZSBvbmUgb2YgdGhlIGZvbGxvd2luZzogZWFzdCwgd2VzdCwgc291dGgsIG5vcnRoLCBub3J0aGVhc3QsIG5vcnRod2VzdCwgc291dGhlYXN0LCBhbmQgc291dGh3ZXN0ICg0NSBkZWdyZWVzIHRvIHRoZSBob3Jpem9udGFsIGF4aXMpLiBUaGUgZGlzdGFuY2UgaXMgYSBwb3NpdGl2ZSBpbnRlZ2VyICRkJC4gU3VwcG9zZSB0aGF0IHRoZSBvcmlnaW5hbCBjb29yZGluYXRlcyBvZiB0aGUgcGl4ZWxzIG9mIHRoZSBsZWZ0bW9zdCBhbmQgYm90dG9tIGNvcm5lcnMgb2YgdGhlIHJlY3RhbmdsZSBhcmUgJChhLCBiKSQuIHRoZSBtb3ZlbWVudCBieSBhIGRpc3RhbmNlIG9mICRkJCBpbiB0aGUgZWFzdCwgbm9ydGgsIHdlc3QsIGFuZCBzb3V0aCBkaXJlY3Rpb25zIGNhdXNlcyB0aGUgcmVjdGFuZ2xlIHRvIG1vdmUgdG93YXJkIHRoZSBjb29yZGluYXRlICQoYStkLCBiKSQsICQoYSwgYitkKSQsICQoYS1kLCBiKSQsICQoYSwgYi1kKSQuIEluIGFkZGl0aW9uLCB0aGUgbW92ZW1lbnQgYnkgYSBkaXN0YW5jZSBvZiAkZCQgaW4gdGhlIG5vcnRoZWFzdCwgbm9ydGh3ZXN0LCBzb3V0aHdlc3QsIGFuZCBzb3V0aGVhc3QgZGlyZWN0aW9ucyBjYXVzZXMgdGhlIHJlY3RhbmdsZSB0byBtb3ZlIHRvd2FyZCB0aGUgY29vcmRpbmF0ZSAkKGErZCwgYitkKSQsICQoYS1kLCBiK2QpJCwgJChhLWQsIGItZCkkLCAkKGErZCwgYi1kKSQmbmJzcDs8XC9wPlxyXG5cclxuPHA+TW92aW5nIGJ5IGRpc3RhbmNlICRkJCBvZiB0aGUgcmVjdGFuZ2xlICRSJCBvbiB0aGUgc2NyZWVuIGlzIGltcGxlbWVudGVkIGJ5IHF1aWNrbHkgZGlzcGxheWluZyB0aGUgc2hhcGVzIG9mICRSJCBldmVyeSB0aW1lIHdoZW4gJFIkIG1vdmVzIGJ5IGRpc3RhbmNlIDEuIEhvd2V2ZXIsIG91ciBjb21wdXRlciBpcyB2ZXJ5IG9sZCwgc28gbW92aW5nICRSJCBpcyB2ZXJ5IGxhZ2d5LiBBcyBhIHJlc3VsdCwgYWxsIG9mIHRoZSAkUiQgZHJhd24gaW4gdGhlIG1vdmVtZW50IG9mICRSJCByZW1haW5zIG9uIHRoZSBzY3JlZW4uIFRoZXJlZm9yZSwgaWYgJFIkIG1vdmVzIGJ5IHRoZSBkaXN0YW5jZSAkZCQsICRkJCByZWN0YW5nbGVzIGFyZSBuZXdseSBjcmVhdGVkIG9uIHRoZSBzY3JlZW4uIEZvciBleGFtcGxlLCBpZiB0aGUgcmVjdGFuZ2xlIG1vdmVzIGluIHRoZSBub3J0aGVhc3QgZGlyZWN0aW9uIGJ5IGEgZGlzdGFuY2Ugb2YgMywgMyByZWN0YW5nbGVzIGFyZSBjcmVhdGVkLCBsZWF2aW5nIGEgdG90YWwgb2YgNCByZWN0YW5nbGVzIG9uIHRoZSBzY3JlZW4uIE9mIGNvdXJzZSwgYWZ0ZXIgbW92aW5nLCB0aGUgcmVjdGFuZ2xlIGF0IHRoZSBub3J0aGVhc3QgZW5kIGJlY29tZXMgJFIkLjxcL3A+XHJcblxyXG48cD5BZnRlciBleGVjdXRpbmcgJE0kIG1vdmUgY29tbWFuZHMsICRRJCBxdWVyaWVzIHdpbGwgYmUgZ2l2ZW4uIEVhY2ggcXVlcnkgaXMgZ2l2ZW4gYXMgYSBwaXhlbCAkcCQgb24gdGhlIHBsYW5lLiBQcmludCB0aGUgbnVtYmVyIG9mIHJlY3RhbmdsZXMgY29udGFpbmluZyB0aGUgcGl4ZWwgJHAkIGFzIGFuIGFuc3dlciB0byB0aGUgcXVlcnkuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBjb250YWlucyB0aHJlZSBzcGFjZS1zZXBhcmF0ZWQgaW50ZWdlcnMgJE4sIE0sIFEkLjxcL3A+XHJcblxyXG48cD5UaGUgbmV4dCAkTiQgbGluZXMgY29udGFpbiBmb3VyIHNwYWNlLXNlcGFyYXRlZCBpbnRlZ2VycyAkeF8xLCB5XzEsIHhfMiwgeV8yJCwgZGVub3RpbmcgYSByZWN0YW5nbGUgd2l0aCBsb3dlc3QtbGVmdG1vc3QgcGl4ZWwgJCh4XzEsIHlfMSkkIGFuZCBoaWdoZXN0LXJpZ2h0bW9zdCBwaXhlbCAkKHhfMiwgeV8yKSQuPFwvcD5cclxuXHJcbjxwPlRoZSBuZXh0ICRNJCBsaW5lcyBjb250YWluIHRocmVlIHNwYWNlLXNlcGFyYXRlZCBpbnRlZ2VycyAkdl9pLCB4X2ksIGRfaSQsIGRlbm90aW5nIHRoYXQgdGhlICR4X2kkLXRoIHJlY3RhbmdsZSBtb3ZlZCB0b3dhcmQgdGhlIGRpcmVjdGlvbiAkdl9pJCBieSBkaXN0YW5jZSAkZF9pJC4gVGhlIGRpcmVjdGlvbnMgYXJlOjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPjA6ICQoKzEsIDApJDxcL2xpPlxyXG5cdDxsaT4xOiAkKCsxLCArMSkkJm5ic3A7PFwvbGk+XHJcblx0PGxpPjI6ICQoMCwgKzEpJDxcL2xpPlxyXG5cdDxsaT4zOiAkKC0xLCArMSkkJm5ic3A7PFwvbGk+XHJcblx0PGxpPjQ6ICQoLTEsIDApJDxcL2xpPlxyXG5cdDxsaT41OiAkKC0xLCAtMSkkJm5ic3A7PFwvbGk+XHJcblx0PGxpPjY6ICQoMCwgLTEpJDxcL2xpPlxyXG5cdDxsaT43OiAkKCsxLCAtMSkkJm5ic3A7PFwvbGk+XHJcbjxcL3VsPlxyXG5cclxuPHA+VGhlIG5leHQgJFEkIGxpbmVzIGNvbnRhaW4gdHdvIHNwYWNlLXNlcGFyYXRlZCBpbnRlZ2VycyAkeCwgeSQsIGRlbm90aW5nIHRoZSBxdWVyeSBvbiBwaXhlbCAkKHgsIHkpJC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5Gb3IgZWFjaCBxdWVyeSwgcHJpbnQgdGhlIHNpbmdsZSBpbnRlZ2VyIGRlbm90aW5nIHRoZSBudW1iZXIgb2YgcmVjdGFuZ2xlcyBjb250YWluaW5nIHRoZSBnaXZlbiBwaXhlbC48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIwIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJFbmdsaXNoIiwibGltaXQiOiI8dWw+XHJcblx0PGxpPiQxIFxcbGUgTiBcXGxlIDI1MCwwMDAkPFwvbGk+XHJcblx0PGxpPiQwIFxcbGUgTSBcXGxlIDI1MCwwMDAkPFwvbGk+XHJcblx0PGxpPiQxIFxcbGUgUSBcXGxlIDI1MCwwMDAkPFwvbGk+XHJcblx0PGxpPiQxIFxcbGUgeF8xIFxcbGUgeF8yIFxcbGUgMjUwLDAwMCQ8XC9saT5cclxuXHQ8bGk+JDEgXFxsZSB5XzEgXFxsZSB5XzIgXFxsZSAyNTAsMDAwJDxcL2xpPlxyXG5cdDxsaT4kMCBcXGxlIHZfaSBcXGxlIDckPFwvbGk+XHJcblx0PGxpPiQxIFxcbGUgeF9pIFxcbGUgTiQ8XC9saT5cclxuXHQ8bGk+JDEgXFxsZSBkX2kgXFxsZSAyNTAsMDAwJDxcL2xpPlxyXG5cdDxsaT5BbGwgY29vcmRpbmF0ZXMgYXJlIGEgcG9zaXRpdmUgaW50ZWdlciBmcm9tICQxJCB0byAkMjUwXFwsMDAwJC4gQW55IHBpeGVscyBjb250YWluZWQgaW4gYSByZWN0YW5nbGUgYXQgYW55IHRpbWUgc2F0aXNmaWVzIHRoaXMgY29uc3RyYWludHMuIFF1ZXJpZWQgcGl4ZWxzIGFsc28gc2F0aXNmaWVzIHRoaXMgY29uc3RyYWludHMuPFwvbGk+XHJcbjxcL3VsPlxyXG4iLCJzdWJ0YXNrMSI6IjxwPiROIFxcbGUgMTAwLCBNID0gMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrMiI6IjxwPiRNID0gMCQ8XC9wPlxyXG4iLCJzdWJ0YXNrMyI6IjxwPiRNIFxcbGUgMTAwJDxcL3A+XHJcbiIsInN1YnRhc2s0IjoiPHA+JHZfaSBcXGluIFxcezAsIDIsIDQsIDZcXH0kICgkMCBcXGxlIGkgXFxsZSBNLTEkKS48XC9wPlxyXG4iLCJzdWJ0YXNrNSI6IjxwPiR4XzEgPSB4XzIsIHlfMSA9IHlfMiQ8XC9wPlxyXG4iLCJzdWJ0YXNrNiI6IjxwPk5vIGFkZGl0aW9uYWwgbGltaXRzLjxcL3A+XHJcbiJ9XQ==

채점 및 기타 정보

  • 예제는 채점하지 않는다.
  • 이 문제의 채점 우선 순위는 2이다.