시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
2 초 128 MB 328 37 26 41.270%

문제

N개의 양수로 이루어진 수열 {A[1], A[2], …, A[N]}이 있다. 이 수열에 A[i]에서 A[i+1]을 빼는 축소 연산을 적용하려 한다. 축소 연산은 CON이라는 함수로 나타낼 수 있으며, CON(A, i)를 수행하면 {A[1], A[2], …, A[i-1], A[i] - A[i+1], A[i+2], …, A[N]}의 수열을 얻는다.

이와 같은 축소 연산을 N-1번 적용하면, 수열의 길이가 N-1, N-2, …, 1이 되어 결국에는 한 수만 남게 된다. 이와 같은 축소 연산을 적용하여 T라는 수를 만들 수 있는지 알아보려 한다.

예를 들어 {12, 10, 4, 3, 5}라는 수열에 다음과 같은 축소 연산을 적용하면 4를 만들 수 있다.

  • CON( {12, 10, 4, 3, 5}, 2 ) = {12, 6, 3, 5}
  • CON( {12, 6, 3, 5}, 3 ) = {12, 6, -2}
  • CON( {12, 6, -2}, 2 ) = {12, 8}
  • CON( {12, 8}, 1 ) = {4}

입력

첫째 줄에 N(1≤N≤100), T(0≤|T|≤10,000)이 주어진다. 다음 줄에는 A[1], A[2], … A[N]이 주어진다. A[i]는 1보다 크거나 같고, 100보다 작거나 같은 자연수이다.

출력

첫째 줄부터 사용한 순서대로 축소 연산에서의 i를 출력한다. 항상 가능한 경우만 입력으로 주어지며, 답이 여러 개 존재할 경우에는 임의의 하나를 출력하면 된다.

예제 입력

4 5
10 2 5 2

예제 출력

1
2
1

힌트

출처

Olympiad > 한국정보올림피아드 > KOI 2000 > 고등부 1번

  • 빠진 조건을 찾은 사람: ntopia