시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 1448 722 597 48.854%

문제

어떤 숫자가 줄어들지 않는다는 것은 그 숫자의 각 자리 수보다 그 왼쪽 자리 수가 작거나 같을 때 이다.

예를 들어, 1234는 줄어들지 않는다. 

줄어들지 않는 4자리 수를 예를 들어 보면 0011, 1111, 1112, 1122, 2223이 있다. 줄어들지 않는 4자리수는 총 715개가 있다.

이 문제에서는 숫자의 앞에 0(leading zero)이 있어도 된다. 0000, 0001, 0002는 올바른 줄어들지 않는 4자리수이다.

n이 주어졌을 때, 줄어들지 않는 n자리 수의 개수를 구하는 프로그램을 작성하시오.

입력

첫째 줄에 테스트 케이스의 개수 T(1 <= T <= 1,000)이 주어진다. 각 테스트 케이스는 숫자 하나 n으로 이루어져 있다. (1 <= n <= 64)

출력

각 테스트 케이스에 대해 한 줄에 하나씩 줄어들지 않는 n자리 수의 개수를 출력한다.

예제 입력 1

3
2
3
4

예제 출력 1

55
220
715
W3sicHJvYmxlbV9pZCI6IjI2ODgiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWM5MDRcdWM1YjRcdWI0ZTRcdWM5YzAgXHVjNTRhXHVjNTQ0IiwiZGVzY3JpcHRpb24iOiI8cD5cclxuXHRcdWM1YjRcdWI1YTQgXHVjMjJiXHVjNzkwXHVhYzAwIFx1YzkwNFx1YzViNFx1YjRlNFx1YzljMCBcdWM1NGFcdWIyOTRcdWIyZTRcdWIyOTQgXHVhYzgzXHVjNzQwIFx1YWRmOCBcdWMyMmJcdWM3OTBcdWM3NTggXHVhYzAxIFx1Yzc5MFx1YjlhYyBcdWMyMThcdWJjZjRcdWIyZTQgXHVhZGY4IFx1YzY3Y1x1Y2FiZCBcdWM3OTBcdWI5YWMgXHVjMjE4XHVhYzAwIFx1Yzc5MVx1YWM3MFx1YjA5OCBcdWFjMTlcdWM3NDQgXHViNTRjIFx1Yzc3NFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHJcblx0XHVjNjA4XHViOTdjIFx1YjRlNFx1YzViNCwgMTIzNFx1YjI5NCBcdWM5MDRcdWM1YjRcdWI0ZTRcdWM5YzAgXHVjNTRhXHViMjk0XHViMmU0LiZuYnNwOzxcL3A+XHJcblxyXG48cD5cclxuXHRcdWM5MDRcdWM1YjRcdWI0ZTRcdWM5YzAgXHVjNTRhXHViMjk0IDRcdWM3OTBcdWI5YWMgXHVjMjE4XHViOTdjIFx1YzYwOFx1Yjk3YyBcdWI0ZTRcdWM1YjQgXHViY2Y0XHViYTc0IDAwMTEsIDExMTEsIDExMTIsIDExMjIsIDIyMjNcdWM3NzQgXHVjNzg4XHViMmU0LiBcdWM5MDRcdWM1YjRcdWI0ZTRcdWM5YzAgXHVjNTRhXHViMjk0IDRcdWM3OTBcdWI5YWNcdWMyMThcdWIyOTQgXHVjZDFkIDcxNVx1YWMxY1x1YWMwMCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlxyXG5cdFx1Yzc3NCBcdWJiMzhcdWM4MWNcdWM1ZDBcdWMxMWNcdWIyOTQgXHVjMjJiXHVjNzkwXHVjNzU4IFx1YzU1ZVx1YzVkMCAwKGxlYWRpbmcgemVybylcdWM3NzQgXHVjNzg4XHVjNWI0XHViM2M0IFx1YjQxY1x1YjJlNC4gMDAwMCwgMDAwMSwgMDAwMlx1YjI5NCBcdWM2MmNcdWJjMTRcdWI5NzggXHVjOTA0XHVjNWI0XHViNGU0XHVjOWMwIFx1YzU0YVx1YjI5NCA0XHVjNzkwXHViOWFjXHVjMjE4XHVjNzc0XHViMmU0LjxcL3A+XHJcblxyXG48cD5cclxuXHRuXHVjNzc0IFx1YzhmY1x1YzViNFx1Yzg0Y1x1Yzc0NCBcdWI1NGMsIFx1YzkwNFx1YzViNFx1YjRlNFx1YzljMCBcdWM1NGFcdWIyOTQgblx1Yzc5MFx1YjlhYyBcdWMyMThcdWM3NTggXHVhYzFjXHVjMjE4XHViOTdjIFx1YWQ2Y1x1ZDU1OFx1YjI5NCBcdWQ1MDRcdWI4NWNcdWFkZjhcdWI3YThcdWM3NDQgXHVjNzkxXHVjMTMxXHVkNTU4XHVjMmRjXHVjNjI0LjxcL3A+XHJcbiIsImlucHV0IjoiPHA+XHJcblx0XHVjY2FiXHVjOWY4IFx1YzkwNFx1YzVkMCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNzU4IFx1YWMxY1x1YzIxOCBUKDEgJmx0Oz0gVCAmbHQ7PSAxLDAwMClcdWM3NzQgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWFjMDEgXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YjI5NCBcdWMyMmJcdWM3OTAgXHVkNTU4XHViMDk4IG5cdWM3M2NcdWI4NWMgXHVjNzc0XHViOGU4XHVjNWI0XHVjODM4IFx1Yzc4OFx1YjJlNC4gKDEgJmx0Oz0gbiAmbHQ7PSA2NCk8XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cclxuXHRcdWFjMDEgXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YzVkMCBcdWIzMDBcdWQ1NzQgXHVkNTVjIFx1YzkwNFx1YzVkMCBcdWQ1NThcdWIwOThcdWM1MjkgXHVjOTA0XHVjNWI0XHViNGU0XHVjOWMwIFx1YzU0YVx1YjI5NCBuXHVjNzkwXHViOWFjIFx1YzIxOFx1Yzc1OCBcdWFjMWNcdWMyMThcdWI5N2MgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjAiLCJwcm9ibGVtX2xhbmdfY29kZSI6Ilx1ZDU1Y1x1YWQ2ZFx1YzViNCJ9LHsicHJvYmxlbV9pZCI6IjI2ODgiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJOb24tRGVjcmVhc2luZyBEaWdpdHMiLCJkZXNjcmlwdGlvbiI6IjxwPkEgbnVtYmVyIGlzIHNhaWQgdG8gYmUgbWFkZSB1cCBvZiBub24tZGVjcmVhc2luZyBkaWdpdHMgaWYgYWxsIHRoZSBkaWdpdHMgdG8gdGhlIGxlZnQgb2YgYW55IGRpZ2l0IGlzIGxlc3MgdGhhbiBvciBlcXVhbCB0byB0aGF0IGRpZ2l0LiBGb3IgZXhhbXBsZSwgdGhlIGZvdXItZGlnaXQgbnVtYmVyIDEyMzQgaXMgY29tcG9zZWQgb2YgZGlnaXRzIHRoYXQgYXJlIG5vbi1kZWNyZWFzaW5nLiBTb21lIG90aGVyIGZvdXItZGlnaXQgbnVtYmVycyB0aGF0IGFyZSBjb21wb3NlZCBvZiBub24tZGVjcmVhc2luZyBkaWdpdHMgYXJlIDAwMTEsIDExMTEsIDExMTIsIDExMjIsIDIyMjMuIEFzIGl0IHR1cm5zIG91dCwgdGhlcmUgYXJlIGV4YWN0bHkgNzE1IGZvdXItZGlnaXQgbnVtYmVycyBjb21wb3NlZCBvZiBub24tZGVjcmVhc2luZyBkaWdpdHMuPFwvcD5cclxuXHJcbjxwPk5vdGljZSB0aGF0IGxlYWRpbmcgemVyb2VzIGFyZSByZXF1aXJlZDogMDAwMCwgMDAwMSwgMDAwMiBhcmUgYWxsIHZhbGlkIGZvdXItZGlnaXQgbnVtYmVycyB3aXRoIG5vbmRlY3JlYXNpbmcgZGlnaXRzLjxcL3A+XHJcblxyXG48cD5Gb3IgdGhpcyBwcm9ibGVtLCB5b3Ugd2lsbCB3cml0ZSBhIHByb2dyYW0gdGhhdCBkZXRlcm1pbmVzIGhvdyBtYW55IHN1Y2ggbnVtYmVycyB0aGVyZSBhcmUgd2l0aCBhIHNwZWNpZmllZCBudW1iZXIgb2YgZGlnaXRzPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBvZiBpbnB1dCBjb250YWlucyBhIHNpbmdsZSBpbnRlZ2VyIFAsICgxICZsZTsgUCAmbGU7IDEwMDApLCB3aGljaCBpcyB0aGUgbnVtYmVyIG9mIGRhdGEgc2V0cyB0aGF0IGZvbGxvdy4gRWFjaCBkYXRhIHNldCBpcyBhIHNpbmdsZSBsaW5lIHRoYXQgY29udGFpbnMgdGhlIGRhdGEgc2V0IG51bWJlciwgZm9sbG93ZWQgYnkgYSBzcGFjZSwgZm9sbG93ZWQgYnkgYSBkZWNpbWFsIGludGVnZXIgZ2l2aW5nIHRoZSBudW1iZXIgb2YgZGlnaXRzIE4sICgxICZsZTsgTiAmbGU7IDY0KS48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5Gb3IgZWFjaCBkYXRhIHNldCB0aGVyZSBpcyBvbmUgbGluZSBvZiBvdXRwdXQuIEl0IGNvbnRhaW5zIHRoZSBkYXRhIHNldCBudW1iZXIgZm9sbG93ZWQgYnkgYSBzaW5nbGUgc3BhY2UsIGZvbGxvd2VkIGJ5IHRoZSBudW1iZXIgb2YgTiBkaWdpdCB2YWx1ZXMgdGhhdCBhcmUgY29tcG9zZWQgZW50aXJlbHkgb2Ygbm9uLWRlY3JlYXNpbmcgZGlnaXRzPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMSIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVjNjAxXHVjNWI0In1d