시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 103 38 31 56.364%

문제

동혁이는 스케치북에 직각 이등변 삼각형 N개를 그리려고 한다. 동혁이가 가지고 있는 크레파스는 흰색과 검정색이다.

동혁이가 삼각형을 그릴때마다, 삼각형 내부의 색을 모두 반전시킨다. 즉, 흰색은 검정색으로, 검정색은 흰색으로 칠한다.

이 때, 검정색의 면적을 구하는 프로그램을 작성하시오. 가장 처음에 스케치북은 흰색으로 칠해져 있다.

입력

첫째 줄에 삼각형의 개수 N(1 ≤ N ≤ 10)이 주어진다. 다음 N개의 줄에는 직각 이등변 삼각형의 정보 X, Y, R(1 ≤ X, Y, R ≤ 106)이 주어진다. (X,Y)는 삼각형의 왼쪽 아래 꼭지점의 좌표이고, R는 삼각형 두 변의 길이이다.

출력

첫째 줄에, 검정색으로 칠해진 영역의 면적을 소수점 첫째자리까지 출력한다.

예제 입력 1

3
1 1 2
7 1 6
5 3 4

예제 출력 1

24.0
W3sicHJvYmxlbV9pZCI6IjI4OTMiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJYT1IgXHViM2M0XHVkNjE1IiwiZGVzY3JpcHRpb24iOiI8cD5cclxuXHRcdWIzZDlcdWQ2MDFcdWM3NzRcdWIyOTQgXHVjMmE0XHVjZjAwXHVjZTU4XHViZDgxXHVjNWQwIFx1YzljMVx1YWMwMSBcdWM3NzRcdWI0ZjFcdWJjYzAgXHVjMGJjXHVhYzAxXHVkNjE1IE5cdWFjMWNcdWI5N2MgXHVhZGY4XHViOWFjXHViODI0XHVhY2UwIFx1ZDU1Y1x1YjJlNC4gXHViM2Q5XHVkNjAxXHVjNzc0XHVhYzAwIFx1YWMwMFx1YzljMFx1YWNlMCBcdWM3ODhcdWIyOTQgXHVkMDZjXHViODA4XHVkMzBjXHVjMmE0XHViMjk0IFx1ZDc3MFx1YzBjOVx1YWNmYyBcdWFjODBcdWM4MTVcdWMwYzlcdWM3NzRcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlxyXG5cdFx1YjNkOVx1ZDYwMVx1Yzc3NFx1YWMwMCBcdWMwYmNcdWFjMDFcdWQ2MTVcdWM3NDQgXHVhZGY4XHViOWI0XHViNTRjXHViOWM4XHViMmU0LCBcdWMwYmNcdWFjMDFcdWQ2MTUgXHViMGI0XHViZDgwXHVjNzU4IFx1YzBjOVx1Yzc0NCBcdWJhYThcdWI0NTAgXHViYzE4XHVjODA0XHVjMmRjXHVkMGE4XHViMmU0LiBcdWM5ODksIFx1ZDc3MFx1YzBjOVx1Yzc0MCBcdWFjODBcdWM4MTVcdWMwYzlcdWM3M2NcdWI4NWMsIFx1YWM4MFx1YzgxNVx1YzBjOVx1Yzc0MCBcdWQ3NzBcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cclxuXHQ8aW1nIGFsdD1cIlwiIHNyYz1cIlwvdXBsb2FkXC9pbWFnZXNcL2ludi5wbmdcIiBzdHlsZT1cIndpZHRoOiAzODJweDsgaGVpZ2h0OiAyNDRweDtcIiBcLz48XC9wPlxyXG5cclxuPHA+XHJcblx0XHVjNzc0IFx1YjU0YywgXHVhYzgwXHVjODE1XHVjMGM5XHVjNzU4IFx1YmE3NFx1YzgwMVx1Yzc0NCBcdWFkNmNcdWQ1NThcdWIyOTQgXHVkNTA0XHViODVjXHVhZGY4XHViN2E4XHVjNzQ0IFx1Yzc5MVx1YzEzMVx1ZDU1OFx1YzJkY1x1YzYyNC4gXHVhYzAwXHVjN2E1IFx1Y2M5OFx1Yzc0Y1x1YzVkMCBcdWMyYTRcdWNmMDBcdWNlNThcdWJkODFcdWM3NDAgXHVkNzcwXHVjMGM5XHVjNzNjXHViODVjIFx1Y2U2MFx1ZDU3NFx1YzgzOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cclxuXHRcdWNjYWJcdWM5ZjggXHVjOTA0XHVjNWQwIFx1YzBiY1x1YWMwMVx1ZDYxNVx1Yzc1OCBcdWFjMWNcdWMyMTggTigxICZsZTsgTiAmbGU7IDEwKVx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuIFx1YjJlNFx1Yzc0YyBOXHVhYzFjXHVjNzU4IFx1YzkwNFx1YzVkMFx1YjI5NCBcdWM5YzFcdWFjMDEgXHVjNzc0XHViNGYxXHViY2MwIFx1YzBiY1x1YWMwMVx1ZDYxNVx1Yzc1OCBcdWM4MTVcdWJjZjQgWCwgWSwgUigxICZsZTsgWCwgWSwgUiAmbGU7IDEwPHN1cD42PFwvc3VwPilcdWM3NzQgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiAoWCxZKVx1YjI5NCBcdWMwYmNcdWFjMDFcdWQ2MTVcdWM3NTggXHVjNjdjXHVjYWJkIFx1YzU0NFx1Yjc5OCBcdWFmMmRcdWM5YzBcdWM4MTBcdWM3NTggXHVjODhjXHVkNDVjXHVjNzc0XHVhY2UwLCBSXHViMjk0IFx1YzBiY1x1YWMwMVx1ZDYxNSBcdWI0NTAgXHViY2MwXHVjNzU4IFx1YWUzOFx1Yzc3NFx1Yzc3NFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cclxuXHRcdWNjYWJcdWM5ZjggXHVjOTA0XHVjNWQwLCBcdWFjODBcdWM4MTVcdWMwYzlcdWM3M2NcdWI4NWMgXHVjZTYwXHVkNTc0XHVjOWM0IFx1YzYwMVx1YzVlZFx1Yzc1OCBcdWJhNzRcdWM4MDFcdWM3NDQgXHVjMThjXHVjMjE4XHVjODEwIFx1Y2NhYlx1YzlmOFx1Yzc5MFx1YjlhY1x1YWU0Y1x1YzljMCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVkNTVjXHVhZDZkXHVjNWI0In0seyJwcm9ibGVtX2lkIjoiMjg5MyIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IlhPUiIsImRlc2NyaXB0aW9uIjoiPHA+TWlya28gYW5kIFNsYXZrbyBoYXZlIGJ1aWx0IHRoZWlyIG93biBMRUQgZGlzcGxheS4gVGhlIGRpc3BsYXkgaXMgaW5pdGlhbGx5IHdoaXRlLiBEdXJpbmcgZWFjaCBvZiB0aGUgTiBwYXJ0cyBvZiB0aGUgdGVzdGluZyBwaGFzZSwgTWlya28gYXR0YWNoZWQgdGhyZWUgZWxlY3Ryb2RlcyB0byB0aGUgZGlzcGxheSBpbiBzdWNoIHdheSB0aGF0IHRoZXkgZm9ybWVkIGEgcmlnaHQgaXNvc2NlbGVzIHRyaWFuZ2xlLiBIZSBub3RpY2VkIHRoYXQsIGFmdGVyIGF0dGFjaGluZyB0aGUgZWxlY3Ryb2RlcywgYWxsIHBpeGVscyBpbiB0aGUgZW5jbG9zaW5nIHRyaWFuZ2xlIGFyZSBpbnZlcnRlZCAod2hpdGUgcGl4ZWxzIGJlY29tZSBibGFjaywgYW5kIGJsYWNrIHBpeGVscyBiZWNvbWUgd2hpdGUpLjxcL3A+XHJcblxyXG48cD48aW1nIGFsdD1cIlwiIHNyYz1cIlwvdXBsb2FkXC9pbWFnZXNcL2ludi5wbmdcIiBzdHlsZT1cImhlaWdodDoyNDRweDsgd2lkdGg6MzgycHhcIiBcLz48XC9wPlxyXG5cclxuPHA+V2F0Y2hpbmcgTWlya28gcGxheSB3aXRoIHRoZSBlbGVjdHJvZGVzLCBTbGF2a28gb2JzZXJ2ZWQgaW50ZXJlc3Rpbmcgc2hhcGVzIGVtZXJnaW5nIG9uIHRoZSBzY3JlZW4uIE1hdGhlbWF0aWNhbGx5IGluY2xpbmVkIGFzIGhlIGlzLCBmaXJzdCB0aGluZyB0aGF0IGNyb3NzZWQgaGlzIG1pbmQgd2FzIGhvdyB0byBjYWxjdWxhdGUgdG90YWwgYXJlYSBjb3ZlcmVkIGJ5IGJsYWNrIHBpeGVscy4gSGVscCBoaW0gYnkgd3JpdGluZyBhIHByb2dyYW0gdG8gZG8ganVzdCB0aGF0ITxcL3A+XHJcbiIsImlucHV0IjoiPHA+Rmlyc3QgbGluZSBvZiBpbnB1dCBjb250YWlucyBhbiBpbnRlZ2VyIE4gKDEgJmxlOyBOICZsZTsgMTApLCBudW1iZXIgb2YgdHJpYW5nbGVzIGZvcm1lZCBieSBNaXJrbyYjMzk7cyBmaWRkbGluZyB3aXRoIGVsZWN0cm9kZXMuIEVhY2ggb2YgdGhlIGZvbGxvd2luZyBOIGxpbmVzIGNvbnRhaW5zIHRocmVlIGludGVnZXJzIFgsIFkgYW5kIFIgKDEgJmxlOyBYLCBZLCBSICZsZTsgMTA8c3VwPjY8XC9zdXA+KSwgZGVzY3JpYmluZyBhIHRyaWFuZ2xlLiAoWCwgWSkgYXJlIHRoZSBjb29yZGluYXRlcyBvZiB0aGUgbG93ZXIgbGVmdCBjb3JuZXIgb2YgdGhlIHRyaWFuZ2xlLCB3aGlsZSBSIHJlcHJlc2VudHMgdGhlIGxlbmd0aCBvZiB0aGUgdHdvIHNpZGVzIG9mIHRoZSB0cmlhbmdsZS48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5UaGUgZmlyc3QgYW5kIG9ubHkgbGluZSBvZiBvdXRwdXQgc2hvdWxkIGNvbnRhaW4gdGhlIGFyZWEgY292ZXJlZCBieSBibGFjayBwaXhlbHMsIHJvdW5kZWQgdG8gb25lIGRlY2ltYWwgcGxhY2UuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMSIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVjNjAxXHVjNWI0In1d