시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 139 36 34 31.776%

문제

상근이는 아들이 N명 있다. 아들의 이름은 모두 짝수인 자연수이다. P1, P2, ..., PN

상근이는 곧 태어날 딸을 위해서 이름을 지으려고 한다. 짐작했겠지만, 딸의 이름은 홀수이다. 상근이는 하나뿐인 딸의 이름은 되도록 예쁘게 지으려고 한다. 인터넷에서 숫자 작명법을 찾아보니, 구간 [A, B]에 들어있는 수 중에서 아들 이름과의 차이가 가장 큰 수가 가장 예쁜 딸의 이름이라고 나와있다. 즉, 상근이는 min{|X-Pi|, i ∈ [1,N]}이 가장 큰 X를 딸의 이름을 지으려고 한다.

딸의 이름을 지어주는 프로그램을 작성하시오. 만약, 딸의 이름으로 가능한 자연수가 여러 가지라면 아무거나 출력한다.

입력

첫째 줄에 아들의 수 N이 주어진다. (1 ≤ N ≤ 100) 둘째 줄에는 아들의 이름이 공백으로 구분되어 주어진다. 이름은 항상 109보다 작은 짝수 자연수이다. 셋째 줄에는 A와 B가 주어진다. (1 ≤ A < B ≤ 109)

출력

첫째 줄에 딸의 이름을 출력한다.

예제 입력 1

3
2 6 16
20 50

예제 출력 1

49
W3sicHJvYmxlbV9pZCI6IjMwMTEiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWM3NzRcdWI5ODQgXHVjOWMwXHVjNWI0XHVjOGZjXHVhZTMwIiwiZGVzY3JpcHRpb24iOiI8cD5cclxuXHRcdWMwYzFcdWFkZmNcdWM3NzRcdWIyOTQgXHVjNTQ0XHViNGU0XHVjNzc0IE5cdWJhODUgXHVjNzg4XHViMmU0LiBcdWM1NDRcdWI0ZTRcdWM3NTggXHVjNzc0XHViOTg0XHVjNzQwIFx1YmFhOFx1YjQ1MCBcdWM5ZGRcdWMyMThcdWM3NzggXHVjNzkwXHVjNWYwXHVjMjE4XHVjNzc0XHViMmU0LiBQPHN1Yj4xPFwvc3ViPiwgUDxzdWI+MjxcL3N1Yj4sIC4uLiwgUDxzdWI+TjxcL3N1Yj48XC9wPlxyXG5cclxuPHA+XHJcblx0XHVjMGMxXHVhZGZjXHVjNzc0XHViMjk0IFx1YWNlNyBcdWQwZGNcdWM1YjRcdWIwYTAgXHViNTM4XHVjNzQ0IFx1YzcwNFx1ZDU3NFx1YzExYyBcdWM3NzRcdWI5ODRcdWM3NDQgXHVjOWMwXHVjNzNjXHViODI0XHVhY2UwIFx1ZDU1Y1x1YjJlNC4gXHVjOWQwXHVjNzkxXHVkNTg4XHVhY2EwXHVjOWMwXHViOWNjLCBcdWI1MzhcdWM3NTggXHVjNzc0XHViOTg0XHVjNzQwIFx1ZDY0MFx1YzIxOFx1Yzc3NFx1YjJlNC4gXHVjMGMxXHVhZGZjXHVjNzc0XHViMjk0IFx1ZDU1OFx1YjA5OFx1YmZkMFx1Yzc3OCBcdWI1MzhcdWM3NTggXHVjNzc0XHViOTg0XHVjNzQwIFx1YjQxOFx1YjNjNFx1Yjg1ZCBcdWM2MDhcdWMwNThcdWFjOGMgXHVjOWMwXHVjNzNjXHViODI0XHVhY2UwIFx1ZDU1Y1x1YjJlNC4gXHVjNzc4XHVkMTMwXHViMTM3XHVjNWQwXHVjMTFjIFx1YzIyYlx1Yzc5MCBcdWM3OTFcdWJhODVcdWJjOTVcdWM3NDQgXHVjYzNlXHVjNTQ0XHViY2Y0XHViMmM4LCBcdWFkNmNcdWFjMDQgW0EsIEJdXHVjNWQwIFx1YjRlNFx1YzViNFx1Yzc4OFx1YjI5NCBcdWMyMTggXHVjOTExXHVjNWQwXHVjMTFjIFx1YzU0NFx1YjRlNCBcdWM3NzRcdWI5ODRcdWFjZmNcdWM3NTggXHVjYzI4XHVjNzc0XHVhYzAwIFx1YWMwMFx1YzdhNSBcdWQwNzAgXHVjMjE4XHVhYzAwIFx1YWMwMFx1YzdhNSBcdWM2MDhcdWMwNWMgXHViNTM4XHVjNzU4IFx1Yzc3NFx1Yjk4NFx1Yzc3NFx1Yjc3Y1x1YWNlMCBcdWIwOThcdWM2NDBcdWM3ODhcdWIyZTQuIFx1Yzk4OSwgXHVjMGMxXHVhZGZjXHVjNzc0XHViMjk0IG1pbnt8WC1QPHN1Yj5pPFwvc3ViPnwsIGkgJmlzaW47IFsxLE5dfVx1Yzc3NCBcdWFjMDBcdWM3YTUgXHVkMDcwIFhcdWI5N2MgXHViNTM4XHVjNzU4IFx1Yzc3NFx1Yjk4NFx1Yzc0NCBcdWM5YzBcdWM3M2NcdWI4MjRcdWFjZTAgXHVkNTVjXHViMmU0LjxcL3A+XHJcblxyXG48cD5cclxuXHRcdWI1MzhcdWM3NTggXHVjNzc0XHViOTg0XHVjNzQ0IFx1YzljMFx1YzViNFx1YzhmY1x1YjI5NCBcdWQ1MDRcdWI4NWNcdWFkZjhcdWI3YThcdWM3NDQgXHVjNzkxXHVjMTMxXHVkNTU4XHVjMmRjXHVjNjI0LiBcdWI5Y2NcdWM1N2QsIFx1YjUzOFx1Yzc1OCBcdWM3NzRcdWI5ODRcdWM3M2NcdWI4NWMgXHVhYzAwXHViMmE1XHVkNTVjIFx1Yzc5MFx1YzVmMFx1YzIxOFx1YWMwMCBcdWM1ZWNcdWI3ZWMgXHVhYzAwXHVjOWMwXHViNzdjXHViYTc0IFx1YzU0NFx1YmIzNFx1YWM3MFx1YjA5OCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cclxuXHRcdWNjYWJcdWM5ZjggXHVjOTA0XHVjNWQwIFx1YzU0NFx1YjRlNFx1Yzc1OCBcdWMyMTggTlx1Yzc3NCBcdWM4ZmNcdWM1YjRcdWM5YzRcdWIyZTQuICgxICZsZTsgTiAmbGU7IDEwMCkgXHViNDU4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCBcdWM1NDRcdWI0ZTRcdWM3NTggXHVjNzc0XHViOTg0XHVjNzc0IFx1YWNmNVx1YmMzMVx1YzczY1x1Yjg1YyBcdWFkNmNcdWJkODRcdWI0MThcdWM1YjQgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWM3NzRcdWI5ODRcdWM3NDAgXHVkNTZkXHVjMGMxIDEwPHN1cD45PFwvc3VwPlx1YmNmNFx1YjJlNCBcdWM3OTFcdWM3NDAgXHVjOWRkXHVjMjE4IFx1Yzc5MFx1YzVmMFx1YzIxOFx1Yzc3NFx1YjJlNC4gXHVjMTRiXHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCBBXHVjNjQwIEJcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiAoMSAmbGU7IEEgJmx0OyBCICZsZTsgMTA8c3VwPjk8XC9zdXA+KTxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPlxyXG5cdFx1Y2NhYlx1YzlmOCBcdWM5MDRcdWM1ZDAgXHViNTM4XHVjNzU4IFx1Yzc3NFx1Yjk4NFx1Yzc0NCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVkNTVjXHVhZDZkXHVjNWI0In0seyJwcm9ibGVtX2lkIjoiMzAxMSIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IlBSSU5PVkEiLCJkZXNjcmlwdGlvbiI6IjxwPkJyb2prbyBhbmQgQnJvamFuYSBhcmUgaGFwcGlseSBtYXJyaWVkIHdpdGggTiBsaXR0bGUgYm95cy4gVGhlIGJveXMgYXJlIG5hbWVkIHdpdGggZGlzdGluY3QgZXZlbiBpbnRlZ2VycyBQPHN1Yj4xPFwvc3ViPiwgUDxzdWI+MjxcL3N1Yj4sIC4uLiwgUDxzdWI+TjxcL3N1Yj4uJm5ic3A7PFwvcD5cclxuXHJcbjxwPkJyb2prbyBhbmQgQnJvamFuYSBhcmUgZXhwZWN0aW5nIGFuIGFkZGl0aW9uIHRvIHRoZWlyIGZhbWlseSBhbmQgaGF2ZSB0byBjb21lIHVwIHdpdGggYSBuaWNlIG5hbWUgZm9yIHRoZSBsaXR0bGUgZ2lybC4gVGhleSBoYXZlIGRlY2lkZWQgdGhhdCB0aGUgbmFtZSB3aWxsIGJlIGFuIG9kZCBpbnRlZ2VyIGluIHRoZSByYW5nZSBbQSwgQl0uIEJlY2F1c2UgdGhleSBmaW5kIGFsbCBpbnRlZ2VycyBpbiB0aGF0IHJhbmdlIGVxdWFsbHkgYmVhdXRpZnVsLCB0aGV5IGhhdmUgZGVjaWRlZCB0byBjaG9vc2UgdGhlIG51bWJlciB3aGljaCBtYXhpbWl6ZXMgdGhlIGRpc3RhbmNlIHRvIHRoZSBuYW1lIG9mIHRoZSBjbG9zZXN0IG9mIHRoZSBOIGJveXMuJm5ic3A7PFwvcD5cclxuXHJcbjxwPk1vcmUgcHJlY2lzZWx5LCB0aGV5IHNlZWsgYW4gb2RkIGludGVnZXIgWCAmaXNpbjtbQSxCXSBzdWNoIHRoYXQgdGhlIGV4cHJlc3Npb24mbmJzcDs8XC9wPlxyXG5cclxuPHA+bWlue1ggJm1pbnVzOyBQPHN1Yj5pPFwvc3ViPixpICZpc2luOyBbMSwmbmJzcDtOXX08XC9wPlxyXG5cclxuPHA+aXMgYXMgbGFyZ2UgYXMgcG9zc2libGUuJm5ic3A7PFwvcD5cclxuXHJcbjxwPldyaXRlIGEgcHJvZ3JhbSB0aGF0IGRldGVybWluZXMgdGhlIG5hbWUgZm9yIHRoZSBsaXR0bGUgZ2lybC4gSWYgdGhlcmUgYXJlIG11bHRpcGxlIHNvbHV0aW9ucywgb3V0cHV0IGFueSBvZiB0aGVtLiZuYnNwOzxcL3A+XHJcbiIsImlucHV0IjoiPHA+VGhlIGZpcnN0IGxpbmUgY29udGFpbnMgYW4gaW50ZWdlciBOICgxICZsZTsgTiAmbGU7IDEwMCksIHRoZSBudW1iZXIgb2YgYm95cy4mbmJzcDs8XC9wPlxyXG5cclxuPHA+VGhlIHNlY29uZCBsaW5lIGNvbnRhaW5zIE4gZGlzdGluY3QgZXZlbiBpbnRlZ2VycywgdGhlIG5hbWVzIG9mIHRoZSBib3lzLiBUaGUgaW50ZWdlcnMgd2lsbCBiZSBsZXNzIHRoYW4gMTA8c3VwPjk8XC9zdXA+LiZuYnNwOzxcL3A+XHJcblxyXG48cD5UaGUgdGhpcmQgbGluZSBjb250YWlucyB0aGUgaW50ZWdlcnMgQSBhbmQgQiAoMSAmbGU7IEEgJmx0OyBCICZsZTsgMTA8c3VwPjk8XC9zdXA+KSwgdGhlIHJhbmdlIG9mIG5hbWVzIHRoZXkgYXJlIGNvbnNpZGVyaW5nIGZvciB0aGUgZ2lybC4mbmJzcDs8XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5PdXRwdXQgYW4gaW50ZWdlciwgdGhlIG5hbWUgZm9yIHRoZSBsaXR0bGUgZ2lybC48XC9wPlxyXG5cclxuPHA+Jm5ic3A7PFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMSIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVjNjAxXHVjNWI0In1d