시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 25 13 10 47.619%

문제

정수론 중간고사를 마치고 집으로 돌아온 상근이는 패닉에 빠졌다. 유일하게 공부를 하지 않은 것이 오일러 피 함수(Euler's totient function, \(\varphi \))였는데, 그 함수에 관한 문제만 나왔기 때문이다. 상근이는 너무 억울했고, 직접 Totient 함수를 만들기로 했다.

정수론에서 양의 정수의 소인수는 그 정수를 나머지 없이 나눌 수 있는 소수이다. 상근이는 n ≥ 2에서 함수 F(n)을 곱이 n이 되는 감소하지 않는 소수의 리스트로 정의했다. 예를 들어, F(8) = «2,2,2», F(60) = «2,2,3,5», F(71) = «71» 이다. O(n)은 F(n)의 길이이다. 예를 들어, O(8) = 3, O(60) = 4, O(71) = 1 이 된다. 마지막으로, 양의 정수에 대해서 \(p(n)\)을 다음과 같이 정의했다.

\(p(n) = \begin{cases} 0 & \text{if } n = 1 \\ -1 & \text{if } n \text{ is a prime number} \\ O(n) & \text {otherwise} \end{cases}\)

아래 표에는 \(p(n)\)의 첫 20개 값이 나와있다.

a ≤ b를 만족하는 두 양의 정수 a와 b에 대해서, 상근이는 자신의 Totient 함수인 \(\varphi(a,b)\)를 다음과 같이 정의했다.

\(\varphi (a,b)= ( \sum _{ k=a }^{ b }{ p(k) }  )  - (b-a+1)\)

예를 들어, \(\varphi(1,4) = -4\), \(\varphi(16,16) = 3\), \(\varphi(8,12) = 4\) 이다.

구간 [L, U]가 주어졌을 때, 가장 큰 값을 갖는 \(\varphi\)를 찾는 프로그램을 작성하시오.

즉, L ≤ U를 만족하는 두 양의 정수 L과 U가 주어졌을 때, 가장 큰 \(\varphi(a,b)\) (L ≤ a ≤ b ≤ U) 를 찾는 프로그램을 작성하시오. 예를 들어, 구간 [1,20]에서 가장 큰 \(\varphi\)는 7이다. (\(\varphi(8,16)\))

입력

입력은 여러 개의 테스트 케이스로 이루어져 있다. 각 테스트 케이스는 한 줄로 이루어져 있고, L과 U가 주어진다. (1 ≤ L ≤ U < 1,000,000)

입력의 마지막 줄에는 -1이 두 개 주어진다.

출력

각 테스트 케이스마다 주어진 구간 [L, U]에서 찾을 수 있는 가장 큰 \(\varphi\) 값을 출력한다.

예제 입력 1

1 5
1 20
10 20
900000 901000
-1 -1

예제 출력 1

1. 1
2. 7
3. 5
4. 2551
W3sicHJvYmxlbV9pZCI6IjQ5MjQiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWM4MTVcdWMyMThcdWI4NjAgXHVjMmViXHVjNWI0IiwiZGVzY3JpcHRpb24iOiI8cD5cdWM4MTVcdWMyMThcdWI4NjAgXHVjOTExXHVhYzA0XHVhY2UwXHVjMGFjXHViOTdjIFx1YjljOFx1Y2U1OFx1YWNlMCBcdWM5ZDFcdWM3M2NcdWI4NWMgXHViM2NjXHVjNTQ0XHVjNjI4IFx1YzBjMVx1YWRmY1x1Yzc3NFx1YjI5NCBcdWQzMjhcdWIyYzlcdWM1ZDAgXHViZTYwXHVjODRjXHViMmU0LiBcdWM3MjBcdWM3N2NcdWQ1NThcdWFjOGMgXHVhY2Y1XHViZDgwXHViOTdjIFx1ZDU1OFx1YzljMCBcdWM1NGFcdWM3NDAgXHVhYzgzXHVjNzc0IFx1YzYyNFx1Yzc3Y1x1YjdlYyBcdWQ1M2MgXHVkNTY4XHVjMjE4KEV1bGVyJiMzOTtzIHRvdGllbnQgZnVuY3Rpb24sIFxcKFxcdmFycGhpIFxcKSlcdWM2MDBcdWIyOTRcdWIzNzAsIFx1YWRmOCBcdWQ1NjhcdWMyMThcdWM1ZDAgXHVhZDAwXHVkNTVjIFx1YmIzOFx1YzgxY1x1YjljYyBcdWIwOThcdWM2NTRcdWFlMzAgXHViNTRjXHViYjM4XHVjNzc0XHViMmU0LiBcdWMwYzFcdWFkZmNcdWM3NzRcdWIyOTQgXHViMTA4XHViYjM0IFx1YzViNVx1YzZiOFx1ZDU4OFx1YWNlMCwgXHVjOWMxXHVjODExIFRvdGllbnQgXHVkNTY4XHVjMjE4XHViOTdjIFx1YjljY1x1YjRlNFx1YWUzMFx1Yjg1YyBcdWQ1ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlx1YzgxNVx1YzIxOFx1Yjg2MFx1YzVkMFx1YzExYyBcdWM1OTFcdWM3NTggXHVjODE1XHVjMjE4XHVjNzU4IFx1YzE4Y1x1Yzc3OFx1YzIxOFx1YjI5NCBcdWFkZjggXHVjODE1XHVjMjE4XHViOTdjIFx1YjA5OFx1YmEzOFx1YzljMCBcdWM1YzZcdWM3NzQgXHViMDk4XHViMjBjIFx1YzIxOCBcdWM3ODhcdWIyOTQgXHVjMThjXHVjMjE4XHVjNzc0XHViMmU0LiBcdWMwYzFcdWFkZmNcdWM3NzRcdWIyOTQgbiAmZ2U7IDJcdWM1ZDBcdWMxMWMgXHVkNTY4XHVjMjE4IEYobilcdWM3NDQgXHVhY2YxXHVjNzc0IG5cdWM3NzQgXHViNDE4XHViMjk0IFx1YWMxMFx1YzE4Y1x1ZDU1OFx1YzljMCBcdWM1NGFcdWIyOTQgXHVjMThjXHVjMjE4XHVjNzU4IFx1YjlhY1x1YzJhNFx1ZDJiOFx1Yjg1YyBcdWM4MTVcdWM3NThcdWQ1ODhcdWIyZTQuIFx1YzYwOFx1Yjk3YyBcdWI0ZTRcdWM1YjQsIEYoOCkgPSAmbGFxdW87MiwyLDImcmFxdW87LCBGKDYwKSA9ICZsYXF1bzsyLDIsMyw1JnJhcXVvOywgRig3MSkgPSAmbGFxdW87NzEmcmFxdW87IFx1Yzc3NFx1YjJlNC4gTyhuKVx1Yzc0MCBGKG4pXHVjNzU4IFx1YWUzOFx1Yzc3NFx1Yzc3NFx1YjJlNC4gXHVjNjA4XHViOTdjIFx1YjRlNFx1YzViNCwgTyg4KSA9IDMsIE8oNjApID0gNCwgTyg3MSkgPSAxIFx1Yzc3NCBcdWI0MWNcdWIyZTQuIFx1YjljOFx1YzljMFx1YjljOVx1YzczY1x1Yjg1YywgXHVjNTkxXHVjNzU4IFx1YzgxNVx1YzIxOFx1YzVkMCBcdWIzMDBcdWQ1NzRcdWMxMWMgXFwocChuKVxcKVx1Yzc0NCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzc0IFx1YzgxNVx1Yzc1OFx1ZDU4OFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XFwocChuKSA9IFxcYmVnaW57Y2FzZXN9IDAgJmFtcDsgXFx0ZXh0e2lmIH0gbiA9IDEgXFxcXCAtMSAmYW1wOyBcXHRleHR7aWYgfSBuIFxcdGV4dHsgaXMgYSBwcmltZSBudW1iZXJ9IFxcXFwgTyhuKSAmYW1wOyBcXHRleHQge290aGVyd2lzZX0gXFxlbmR7Y2FzZXN9XFwpPFwvcD5cclxuXHJcbjxwPlx1YzU0NFx1Yjc5OCBcdWQ0NWNcdWM1ZDBcdWIyOTQgXFwocChuKVxcKVx1Yzc1OCBcdWNjYWIgMjBcdWFjMWMgXHVhYzEyXHVjNzc0IFx1YjA5OFx1YzY0MFx1Yzc4OFx1YjJlNC48XC9wPlxyXG5cclxuPHA+PGltZyBhbHQ9XCJcIiBzcmM9XCJcL3VwbG9hZFwvaW1hZ2VzXC9wbi5wbmdcIiBzdHlsZT1cImhlaWdodDo2NHB4OyB3aWR0aDo1NThweFwiIFwvPjxcL3A+XHJcblxyXG48cD5hICZsZTsgYlx1Yjk3YyBcdWI5Y2NcdWM4NzFcdWQ1NThcdWIyOTQgXHViNDUwIFx1YzU5MVx1Yzc1OCBcdWM4MTVcdWMyMTggYVx1YzY0MCBiXHVjNWQwIFx1YjMwMFx1ZDU3NFx1YzExYywgXHVjMGMxXHVhZGZjXHVjNzc0XHViMjk0IFx1Yzc5MFx1YzJlMFx1Yzc1OCBUb3RpZW50IFx1ZDU2OFx1YzIxOFx1Yzc3OCBcXChcXHZhcnBoaShhLGIpXFwpXHViOTdjIFx1YjJlNFx1Yzc0Y1x1YWNmYyBcdWFjMTlcdWM3NzQgXHVjODE1XHVjNzU4XHVkNTg4XHViMmU0LjxcL3A+XHJcblxyXG48cD5cXChcXHZhcnBoaSAoYSxiKT0gKCBcXHN1bSBfeyBrPWEgfV57IGIgfXsgcChrKSB9ICZuYnNwOykgJm5ic3A7LSAoYi1hKzEpXFwpPFwvcD5cclxuXHJcbjxwPlx1YzYwOFx1Yjk3YyBcdWI0ZTRcdWM1YjQsIFxcKFxcdmFycGhpKDEsNCkgPSAtNFxcKSwgXFwoXFx2YXJwaGkoMTYsMTYpID0gM1xcKSwgXFwoXFx2YXJwaGkoOCwxMikgPSA0XFwpIFx1Yzc3NFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVhZDZjXHVhYzA0IFtMLCBVXVx1YWMwMCBcdWM4ZmNcdWM1YjRcdWM4NGNcdWM3NDQgXHViNTRjLCBcdWFjMDBcdWM3YTUgXHVkMDcwIFx1YWMxMlx1Yzc0NCBcdWFjMTZcdWIyOTQgXFwoXFx2YXJwaGlcXClcdWI5N2MgXHVjYzNlXHViMjk0IFx1ZDUwNFx1Yjg1Y1x1YWRmOFx1YjdhOFx1Yzc0NCBcdWM3OTFcdWMxMzFcdWQ1NThcdWMyZGNcdWM2MjQuPFwvcD5cclxuXHJcbjxwPlx1Yzk4OSwgTCAmbGU7IFVcdWI5N2MgXHViOWNjXHVjODcxXHVkNTU4XHViMjk0IFx1YjQ1MCBcdWM1OTFcdWM3NTggXHVjODE1XHVjMjE4IExcdWFjZmMgVVx1YWMwMCBcdWM4ZmNcdWM1YjRcdWM4NGNcdWM3NDQgXHViNTRjLCBcdWFjMDBcdWM3YTUgXHVkMDcwIFxcKFxcdmFycGhpKGEsYilcXCkgKEwgJmxlOyBhICZsZTsgYiAmbGU7IFUpIFx1Yjk3YyBcdWNjM2VcdWIyOTQgXHVkNTA0XHViODVjXHVhZGY4XHViN2E4XHVjNzQ0IFx1Yzc5MVx1YzEzMVx1ZDU1OFx1YzJkY1x1YzYyNC4gXHVjNjA4XHViOTdjIFx1YjRlNFx1YzViNCwgXHVhZDZjXHVhYzA0IFsxLDIwXVx1YzVkMFx1YzExYyBcdWFjMDBcdWM3YTUgXHVkMDcwIFxcKFxcdmFycGhpXFwpXHViMjk0IDdcdWM3NzRcdWIyZTQuIChcXChcXHZhcnBoaSg4LDE2KVxcKSk8XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Yzc4NVx1YjgyNVx1Yzc0MCBcdWM1ZWNcdWI3ZWMgXHVhYzFjXHVjNzU4IFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWI4NWMgXHVjNzc0XHViOGU4XHVjNWI0XHVjODM4IFx1Yzc4OFx1YjJlNC4gXHVhYzAxIFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWIyOTQgXHVkNTVjIFx1YzkwNFx1Yjg1YyBcdWM3NzRcdWI4ZThcdWM1YjRcdWM4MzggXHVjNzg4XHVhY2UwLCBMXHVhY2ZjIFVcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiAoMSAmbGU7IEwgJmxlOyBVICZsdDsgMSwwMDAsMDAwKTxcL3A+XHJcblxyXG48cD5cdWM3ODVcdWI4MjVcdWM3NTggXHViOWM4XHVjOWMwXHViOWM5IFx1YzkwNFx1YzVkMFx1YjI5NCAtMVx1Yzc3NCBcdWI0NTAgXHVhYzFjIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWFjMDEgXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YjljOFx1YjJlNCBcdWM4ZmNcdWM1YjRcdWM5YzQgXHVhZDZjXHVhYzA0IFtMLCBVXVx1YzVkMFx1YzExYyBcdWNjM2VcdWM3NDQgXHVjMjE4IFx1Yzc4OFx1YjI5NCBcdWFjMDBcdWM3YTUgXHVkMDcwIFxcKFxcdmFycGhpXFwpIFx1YWMxMlx1Yzc0NCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVkNTVjXHVhZDZkXHVjNWI0In0seyJwcm9ibGVtX2lkIjoiNDkyNCIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IkpvaG5ueSBIYXRlcyBOdW1iZXIgVGhlb3J5IiwiZGVzY3JpcHRpb24iOiI8cD5Kb2hubnkgaGF0ZXMgTnVtYmVyIFRoZW9yeSEgQWN0dWFsbHksIGJhY2sgaW4gMjAwMiwgd2UgY2FtZSB0byBrbm93IHRoYXQgSm9obm55IGNvdWxkbiZyc3F1bzt0IGNvdW50IGFuZCBpbiAyMDA1IHdlIGtuZXcgdGhhdCBKb2hubnkgY291bGRuJnJzcXVvO3QgeWV0IGFkZC4gKEJ1dCB3ZSBkaWQga25vdyBpbiAyMDAzIHRoYXQgSm9obm55IHdhcyBzdHJlZXQgc21hcnQgZW5vdWdoIHRvIHNvbHZlIGRpXHVmYjAzY3VsdCBncmFwaCBwcm9ibGVtcyEpIFdoeSBKb2hubnkgZGVjaWRlZCB0byBzdHVkeSBOdW1iZXIgVGhlb3J5IGlzIGluY29tcHJlaGVuc2libGUgdG8gdXMuPFwvcD5cclxuXHJcbjxwPkFueWhvdywgYmFjayB0byBKb2hubnkuIEpvaG5ueSBqdXN0IGZhaWxlZCBoaXMgY29tcHJlaGVuc2l2ZSBleGFtIGFuZCB0aGF0IHdhcyBhbGwgYmVjYXVzZSBvZiBFdWxlciZyc3F1bztzIFRvdGllbnQgZnVuY3Rpb24gKFxcKFxcdmFycGhpXFwpKS4gSm9obm55IGlzIHNvIGFuZ3J5IHRoYXQgaGUgZGVjaWRlcyB0byBjcmVhdGUgaGlzIG93biBUb3RpZW50IGZ1bmN0aW9uLiBIZXJlJnJzcXVvO3MgaG93IGhlIGRlc2NyaWJlZCBpdCB0byBoaXMgYWR2aXNvcjo8XC9wPlxyXG5cclxuPHA+SW4gbnVtYmVyIHRoZW9yeSwgdGhlIHByaW1lIGZhY3RvcnMgb2YgYSBwb3NpdGl2ZSBpbnRlZ2VyIGFyZSB0aGUgcHJpbWUgbnVtYmVycyB0aGF0IGRpdmlkZSBpbnRvIHRoYXQgaW50ZWdlciBleGFjdGx5LCB3aXRob3V0IGxlYXZpbmcgYSByZW1haW5kZXIuIEpvaG5ueSBkZVx1ZmIwMW5lcyBmdW5jdGlvbiBGKG4pLCBmb3IgbiAmZ2U7IDIsIHRvIGJlIHRoZSBub24tZGVjcmVhc2luZyBsaXN0IG9mIHByaW1lIG51bWJlcnMgd2hvc2UgcHJvZHVjdCBpcyBuLiBGb3IgZXhhbXBsZSwgRig4KSA9IFx1MDAwNCZsYXF1bzsyLDIsMiZyYXF1bztcdTAwMDUsIEYoNjApID0gXHUwMDA0JmxhcXVvOzIsMiwzLDUmcmFxdW87XHUwMDA1LCBhbmQgRig3MSkgPSBcdTAwMDQmbGFxdW87NzEmcmFxdW87XHUwMDA1ICg3MSBpcyBhIHByaW1lLikgTGV0IE8obikgYmUgdGhlIGxlbmd0aCBvZiB0aGUgbGlzdCBGKG4pIChpLmUuIGl0cyBvcmRpbmFsLikgRm9yIGV4YW1wbGUsIE8oOCkgPSAzLCBPKDYwKSA9IDQsIGFuZCBPKDcxKSA9IDEuIEpvaG5ueSBhbHNvIGRlXHVmYjAxbmVzIGZ1bmN0aW9uIFxcKHAobilcXCkgb3ZlciBwb3NpdGl2ZSBpbnRlZ2VycyBhcyBmb2xsb3dzOjxcL3A+XHJcblxyXG48cD5cXChwKG4pID0gXFxiZWdpbntjYXNlc30gMCAmYW1wOyBcXHRleHR7aWYgfSBuID0gMSBcXFxcIC0xICZhbXA7IFxcdGV4dHtpZiB9IG4gXFx0ZXh0eyBpcyBhIHByaW1lIG51bWJlcn0gXFxcXCBPKG4pICZhbXA7IFxcdGV4dCB7b3RoZXJ3aXNlfSBcXGVuZHtjYXNlc31cXCk8XC9wPlxyXG5cclxuPHA+VGhlIGZvbGxvd2luZyB0YWJsZSBpbGx1c3RyYXRlcyBcXChwKG4pXFwpIGZvciB0aGUgXHVmYjAxcnN0IHR3ZW50eSBwb3NpdGl2ZSBpbnRlZ2Vyczo8XC9wPlxyXG5cclxuPHA+cm1mbGE8XC9wPlxyXG5cclxuPHA+R2l2ZW4gdHdvIHBvc2l0aXZlIGludGVnZXJzIGEgYW5kIGIgd2hlcmUgYSAmbGU7IGIsIEpvaG5ueSBkZVx1ZmIwMW5lcyBoaXMgdmVyeSBvd24gVG90aWVudCBmdW5jdGlvbiBcXChcXHZhcnBoaShhLGIpXFwpIGFzIGZvbGxvd3M6PFwvcD5cclxuXHJcbjxwPlxcKFxcdmFycGhpIChhLGIpPSAoIFxcc3VtIF97IGs9YSB9XnsgYiB9eyBwKGspIH0gJm5ic3A7KSAmbmJzcDstIChiLWErMSlcXCk8XC9wPlxyXG5cclxuPHA+Rm9yIGV4YW1wbGUsIFxcKFxcdmFycGhpKDEsNCkgPSAtNFxcKSwgXFwoXFx2YXJwaGkoMTYsMTYpID0gM1xcKSwgYW5kIFxcKFxcdmFycGhpKDgsMTIpID0gNFxcKS48XC9wPlxyXG5cclxuPHA+Rm9yIGhpcyBkaXNzZXJ0YXRpb24sIEpvaG5ueSBuZWVkcyBhIHByb2dyYW0gdGhhdCBkZXRlcm1pbmVzIHRoZSBtYXhpbWFsIFxcKFxcdmFycGhpXFwpIHdpdGhpbiBhIGdpdmVuIHJhbmdlIFtMLCBVXS4gSW4gb3RoZXIgd29yZHMsIGdpdmVuIHR3byBwb3NpdGl2ZSBpbnRlZ2VycyBMLCBVIHN1Y2ggdGhhdCBMICZsZTsgVSwgdGhlIHByb2dyYW0gbXVzdCBcdWZiMDFuZCB0aGUgbWF4aW11bSBcXChcXHZhcnBoaShhLCBiKVxcKSB3aGVyZSBMICZsZTsgYSAmbGU7IGIgJmxlOyBVLiBGb3IgZXhhbXBsZSwgdGhlIG1heGltYWwgXFwoXFx2YXJwaGlcXCkgd2l0aGluIHRoZSByYW5nZSBbMSwyMF0gaXMgNyAod2hpY2ggaXMgXFwoXFx2YXJwaGkoOCwxNilcXCkuKTxcL3A+XHJcblxyXG48cD5Xcml0ZSB0aGUgcHJvZ3JhbSBKb2hubnkgbmVlZHMhPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5Zb3VyIHByb2dyYW0gd2lsbCBiZSB0ZXN0ZWQgb24gb25lIG9yIG1vcmUgdGVzdCBjYXNlcy4gRWFjaCB0ZXN0IGNhc2UgaXMgc3BlY2lcdWZiMDFlZCBvbiBhIHNpbmdsZSBsaW5lLiBFYWNoIHRlc3QgY2FzZSBpcyBzcGVjaVx1ZmIwMWVkIHVzaW5nIHR3byBwb3NpdGl2ZSBpbnRlZ2VycyBMIGFuZCBVIHNlcGFyYXRlZCBieSBvbmUgb3IgbW9yZSBzcGFjZXMsIGFuZCBzYXRpc2Z5aW5nIHRoZSBmb2xsb3dpbmcgcHJvcGVydHk6IDEgJmxlOyBMICZsZTsgVSAmbHQ7IDEsMDAwLDAwMDxcL3A+XHJcblxyXG48cD5UaGUgZW5kIG9mIHRoZSB0ZXN0IGNhc2VzIGlzIGluZGljYXRlZCBieSBhIGxpbmUgbWFkZSBvZiB0d28gLTEmcnNxdW87cy4gVGhhdCBsYXN0IGxpbmUgaXMgaXMgbm90IHBhcnQgb2YgdGhlIHRlc3QgY2FzZXMuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+Rm9yIGVhY2ggdGVzdCBjYXNlLCBvdXRwdXQgdGhlIHJlc3VsdCBvbiBhIHNpbmdsZSBsaW5lIHVzaW5nIHRoZSBmb2xsb3dpbmcgZm9ybWF0OjxcL3A+XHJcblxyXG48cD5rLnJlc3VsdDxcL3A+XHJcblxyXG48cD5XaGVyZSBrIGlzIHRoZSB0ZXN0IGNhc2UgbnVtYmVyIChzdGFydGluZyBhdCAxLCkgYW5kIHJlc3VsdCBpcyB0aGUgbWF4aW1hbCBcXChcXHZhcnBoaVxcKSB0aGF0IGNhbiBiZSBmb3VuZCB3aXRoaW4gdGhlIHJhbmdlIFtMLCBVXS48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwicHJvYmxlbV9sYW5nX2NvZGUiOiJcdWM2MDFcdWM1YjQifV0=