시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 41 12 10 29.412%

문제

1801년에 칼 프리드리히 가우스 (1777-1855)는 현대 정수론의 토대를 마련한 "Disquisitiones Arithmeticae"를 발표했고, 오늘날까지 팔리고 있다. 이 책에서 가장 많이 나온 주제 중 하나는 제곱잉여이다.

소수 \(p\)와 정수 \(a \not\equiv 0 \pmod{p}\) 가 있다. \(a\)가 \(p\)에 대한 제곱잉여가 되려면 다음과 같은 조건을 만족하는 정수 \(x\)가 존재해야 한다.

\[x^2 \equiv a \pmod{p}\]

라그랑주 (1752-1833)은 아래와 같은 르장드르 기호를 만들었다.

\[\left(\frac{a}{p}\right) = 
\begin{cases}
 1 & a \text{ 가 } p \text{ 에 대한 제곱잉여인 경우} \\
-1 & a \text{ 가 } p \text{ 에 대한 제곱잉여가 아닌 경우} \\
\end{cases}\]

르장드르 기호를 계산하려면 다음과 같은 성질을 이용하면 좋으며, 서로 다른 홀수 소수 \(p\), \(q\)와 \(p\)로 나누어 떨어지지 않는 \(a\), \(b\)에 대해서만 성립한다.

  1. \(\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)\)
  2. \(\left(\frac{1}{p}\right) = 1\)
  3. \(a \equiv b \pmod{p} \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)\)
  4. \(\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}, \left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}\)
  5. \(\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}\)

이제 다음과 같이 르장드르 기호를 쉽게 계산할 수 있다.

\[\left(\frac{29}{79}\right) = (-1)^{78\cdot28/4} \left(\frac{79}{29}\right)  = \left(\frac{79}{29}\right) = \left(\frac{-8}{29}\right) = \left(\frac{-1}{29}\right) \left(\frac{2}{29}\right)^{3} = \left(\frac{-1}{29}\right) \left(\frac{2}{29}\right) \\ = (-1)^{28/2}(-1)^{(29^2-1)/8} = (-1)^{14}(-1)^{105} = -1\]

입력

입력은 여러 개의 테스트 케이스로 이루어져 있고,각 테스트 케이스는 두 정수 \(a\)와 \(p\)로 이루어져 있다. \(p\) (\(2 < p < 10^9\))는 홀수 소수이고, \(a\)는 \(a \not\equiv 0 \pmod{p}\)와 \(\left| a \right| \le 10^9\)를 만족한다.

출력

각 테스트 케이스마다 "Scenario #i:"를 출력한다. i는 테스트 케이스 번호이며 1부터 시작한다. 그 다음 줄에 \(\left(\frac{a}{p}\right)\)를 출력하고 빈 줄을 하나 출력한다.

예제 입력 1

3
29 79
2 29
1 3

예제 출력 1

Scenario #1:
-1

Scenario #2:
-1

Scenario #3:
1
W3sicHJvYmxlbV9pZCI6Ijc1NTgiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWM4MWNcdWFjZjFcdWM3ODlcdWM1ZWMiLCJkZXNjcmlwdGlvbiI6IjxwPjE4MDFcdWIxNDRcdWM1ZDAgXHVjZTdjIFx1ZDUwNFx1YjlhY1x1YjRkY1x1YjlhY1x1ZDc4OCBcdWFjMDBcdWM2YjBcdWMyYTQgKDE3NzctMTg1NSlcdWIyOTQgXHVkNjA0XHViMzAwIFx1YzgxNVx1YzIxOFx1Yjg2MFx1Yzc1OCBcdWQxYTBcdWIzMDBcdWI5N2MgXHViOWM4XHViODI4XHVkNTVjICZxdW90O0Rpc3F1aXNpdGlvbmVzIEFyaXRobWV0aWNhZSZxdW90O1x1Yjk3YyBcdWJjMWNcdWQ0NWNcdWQ1ODhcdWFjZTAsIFx1YzYyNFx1YjI5OFx1YjBhMFx1YWU0Y1x1YzljMCBcdWQzMTRcdWI5YWNcdWFjZTAgXHVjNzg4XHViMmU0LiBcdWM3NzQgXHVjYzQ1XHVjNWQwXHVjMTFjIFx1YWMwMFx1YzdhNSBcdWI5Y2VcdWM3NzQgXHViMDk4XHVjNjI4IFx1YzhmY1x1YzgxYyBcdWM5MTEgXHVkNTU4XHViMDk4XHViMjk0IFx1YzgxY1x1YWNmMVx1Yzc4OVx1YzVlY1x1Yzc3NFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVjMThjXHVjMjE4IFxcKHBcXClcdWM2NDAgXHVjODE1XHVjMjE4IFxcKGEgXFxub3RcXGVxdWl2IDAgXFxwbW9ke3B9XFwpIFx1YWMwMCBcdWM3ODhcdWIyZTQuIFxcKGFcXClcdWFjMDAgXFwocFxcKVx1YzVkMCBcdWIzMDBcdWQ1NWMgXHVjODFjXHVhY2YxXHVjNzg5XHVjNWVjXHVhYzAwIFx1YjQxOFx1YjgyNFx1YmE3NCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzQwIFx1Yzg3MFx1YWM3NFx1Yzc0NCBcdWI5Y2NcdWM4NzFcdWQ1NThcdWIyOTQgXHVjODE1XHVjMjE4IFxcKHhcXClcdWFjMDAgXHVjODc0XHVjN2FjXHVkNTc0XHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9wPlxyXG5cclxuPHA+XFxbeF4yIFxcZXF1aXYgYSBcXHBtb2R7cH1cXF08XC9wPlxyXG5cclxuPHA+XHViNzdjXHVhZGY4XHViNzkxXHVjOGZjICgxNzUyLTE4MzMpXHVjNzQwIFx1YzU0NFx1Yjc5OFx1YzY0MCBcdWFjMTlcdWM3NDAgXHViOTc0XHVjN2E1XHViNGRjXHViOTc0IFx1YWUzMFx1ZDYzOFx1Yjk3YyBcdWI5Y2NcdWI0ZTRcdWM1YzhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlxcW1xcbGVmdChcXGZyYWN7YX17cH1cXHJpZ2h0KSA9Jm5ic3A7PGJyIFwvPlxyXG5cXGJlZ2lue2Nhc2VzfTxiciBcLz5cclxuJm5ic3A7MSAmYW1wOyBhIFxcdGV4dHsgXHVhYzAwIH0gcCBcXHRleHR7IFx1YzVkMCBcdWIzMDBcdWQ1NWMgXHVjODFjXHVhY2YxXHVjNzg5XHVjNWVjXHVjNzc4IFx1YWNiZFx1YzZiMH0gXFxcXDxiciBcLz5cclxuLTEgJmFtcDsgYSBcXHRleHR7IFx1YWMwMCB9IHAgXFx0ZXh0eyBcdWM1ZDAgXHViMzAwXHVkNTVjIFx1YzgxY1x1YWNmMVx1Yzc4OVx1YzVlY1x1YWMwMCBcdWM1NDRcdWIyY2MgXHVhY2JkXHVjNmIwfSBcXFxcPGJyIFwvPlxyXG5cXGVuZHtjYXNlc31cXF08XC9wPlxyXG5cclxuPHA+XHViOTc0XHVjN2E1XHViNGRjXHViOTc0IFx1YWUzMFx1ZDYzOFx1Yjk3YyBcdWFjYzRcdWMwYjBcdWQ1NThcdWI4MjRcdWJhNzQgXHViMmU0XHVjNzRjXHVhY2ZjIFx1YWMxOVx1Yzc0MCBcdWMxMzFcdWM5YzhcdWM3NDQgXHVjNzc0XHVjNmE5XHVkNTU4XHViYTc0IFx1Yzg4Ylx1YzczY1x1YmE3MCwgXHVjMTFjXHViODVjIFx1YjJlNFx1Yjk3OCBcdWQ2NDBcdWMyMTggXHVjMThjXHVjMjE4IFxcKHBcXCksIFxcKHFcXClcdWM2NDAgXFwocFxcKVx1Yjg1YyBcdWIwOThcdWIyMDRcdWM1YjQgXHViNWE4XHVjNWI0XHVjOWMwXHVjOWMwIFx1YzU0YVx1YjI5NCBcXChhXFwpLCBcXChiXFwpXHVjNWQwIFx1YjMwMFx1ZDU3NFx1YzExY1x1YjljYyBcdWMxMzFcdWI5YmRcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjxvbD5cclxuXHQ8bGk+XFwoXFxsZWZ0KFxcZnJhY3thYn17cH1cXHJpZ2h0KSA9IFxcbGVmdChcXGZyYWN7YX17cH1cXHJpZ2h0KVxcbGVmdChcXGZyYWN7Yn17cH1cXHJpZ2h0KVxcKTxcL2xpPlxyXG5cdDxsaT5cXChcXGxlZnQoXFxmcmFjezF9e3B9XFxyaWdodCkgPSAxXFwpPFwvbGk+XHJcblx0PGxpPlxcKGEgXFxlcXVpdiBiIFxccG1vZHtwfSBcXFJpZ2h0YXJyb3cgXFxsZWZ0KFxcZnJhY3thfXtwfVxccmlnaHQpID0gXFxsZWZ0KFxcZnJhY3tifXtwfVxccmlnaHQpXFwpPFwvbGk+XHJcblx0PGxpPlxcKFxcbGVmdChcXGZyYWN7LTF9e3B9XFxyaWdodCkgPSAoLTEpXnsocC0xKVwvMn0sIFxcbGVmdChcXGZyYWN7Mn17cH1cXHJpZ2h0KSA9ICgtMSleeyhwXjItMSlcLzh9XFwpPFwvbGk+XHJcblx0PGxpPlxcKFxcbGVmdChcXGZyYWN7cH17cX1cXHJpZ2h0KVxcbGVmdChcXGZyYWN7cX17cH1cXHJpZ2h0KSA9ICgtMSleeyhwLTEpKHEtMSlcLzR9XFwpPFwvbGk+XHJcbjxcL29sPlxyXG5cclxuPHA+XHVjNzc0XHVjODFjIFx1YjJlNFx1Yzc0Y1x1YWNmYyBcdWFjMTlcdWM3NzQgXHViOTc0XHVjN2E1XHViNGRjXHViOTc0IFx1YWUzMFx1ZDYzOFx1Yjk3YyBcdWMyN2RcdWFjOGMgXHVhY2M0XHVjMGIwXHVkNTYwIFx1YzIxOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPlxcW1xcbGVmdChcXGZyYWN7Mjl9ezc5fVxccmlnaHQpID0gKC0xKV57NzhcXGNkb3QyOFwvNH0gXFxsZWZ0KFxcZnJhY3s3OX17Mjl9XFxyaWdodCkgJm5ic3A7PSBcXGxlZnQoXFxmcmFjezc5fXsyOX1cXHJpZ2h0KSA9IFxcbGVmdChcXGZyYWN7LTh9ezI5fVxccmlnaHQpID0gXFxsZWZ0KFxcZnJhY3stMX17Mjl9XFxyaWdodCkgXFxsZWZ0KFxcZnJhY3syfXsyOX1cXHJpZ2h0KV57M30gPSBcXGxlZnQoXFxmcmFjey0xfXsyOX1cXHJpZ2h0KSBcXGxlZnQoXFxmcmFjezJ9ezI5fVxccmlnaHQpIFxcXFwgPSAoLTEpXnsyOFwvMn0oLTEpXnsoMjleMi0xKVwvOH0gPSAoLTEpXnsxNH0oLTEpXnsxMDV9ID0gLTFcXF08XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1Yzc4NVx1YjgyNVx1Yzc0MCBcdWM1ZWNcdWI3ZWMgXHVhYzFjXHVjNzU4IFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWI4NWMgXHVjNzc0XHViOGU4XHVjNWI0XHVjODM4IFx1Yzc4OFx1YWNlMCxcdWFjMDEgXHVkMTRjXHVjMmE0XHVkMmI4IFx1Y2YwMFx1Yzc3NFx1YzJhNFx1YjI5NCBcdWI0NTAgXHVjODE1XHVjMjE4IFxcKGFcXClcdWM2NDAgXFwocFxcKVx1Yjg1YyBcdWM3NzRcdWI4ZThcdWM1YjRcdWM4MzggXHVjNzg4XHViMmU0LiBcXChwXFwpIChcXCgyICZsdDsgcCAmbHQ7IDEwXjlcXCkpXHViMjk0IFx1ZDY0MFx1YzIxOCBcdWMxOGNcdWMyMThcdWM3NzRcdWFjZTAsIFxcKGFcXClcdWIyOTQgXFwoYSBcXG5vdFxcZXF1aXYgMCBcXHBtb2R7cH1cXClcdWM2NDAgXFwoXFxsZWZ0fCBhIFxccmlnaHR8IFxcbGUgMTBeOVxcKVx1Yjk3YyBcdWI5Y2NcdWM4NzFcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+XHVhYzAxIFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWI5YzhcdWIyZTQgJnF1b3Q7U2NlbmFyaW8gI2k6JnF1b3Q7XHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU1Y1x1YjJlNC4gaVx1YjI5NCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0IFx1YmM4OFx1ZDYzOFx1Yzc3NFx1YmE3MCAxXHViZDgwXHVkMTMwIFx1YzJkY1x1Yzc5MVx1ZDU1Y1x1YjJlNC4gXHVhZGY4IFx1YjJlNFx1Yzc0YyBcdWM5MDRcdWM1ZDAgXFwoXFxsZWZ0KFxcZnJhY3thfXtwfVxccmlnaHQpXFwpXHViOTdjIFx1Y2Q5Y1x1YjgyNVx1ZDU1OFx1YWNlMCBcdWJlNDggXHVjOTA0XHVjNzQ0IFx1ZDU1OFx1YjA5OCBcdWNkOWNcdWI4MjVcdWQ1NWNcdWIyZTQuPFwvcD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsInByb2JsZW1fbGFuZ19jb2RlIjoiXHVkNTVjXHVhZDZkXHVjNWI0In0seyJwcm9ibGVtX2lkIjoiNzU1OCIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IlF1YWRyYXRpYyBSZXNpZHVlcyIsImRlc2NyaXB0aW9uIjoiPHA+SW4gMTgwMSwgQ2FybCBGcmllZHJpY2ggR2F1c3MgKDE3NzctMTg1NSkgcHVibGlzaGVkIGhpcyAmbGRxdW87RGlzcXVpc2l0aW9uZXMgQXJpdGhtZXRpY2FlJnJkcXVvOywgd2hpY2ggYmFzaWNhbGx5IGNyZWF0ZWQgbW9kZXJuIG51bWJlciB0aGVvcnkgYW5kIGlzIHN0aWxsIGJlaW5nIHNvbGQgdG9kYXkuIE9uZSBvZiB0aGUgbWFueSB0b3BpY3MgdHJlYXRlZCBpbiBoaXMgYm9vayB3YXMgdGhlIHByb2JsZW0gb2YgcXVhZHJhdGljIHJlc2lkdWVzLjxcL3A+XHJcblxyXG48cD5Db25zaWRlciBhIHByaW1lIG51bWJlciBcXChwXFwpIGFuZCBhbiBpbnRlZ2VyIFxcKGEgXFxub3RcXGVxdWl2IDAgXFxwbW9ke3B9XFwpLiBUaGVuIFxcKGFcXCkgaXMgY2FsbGVkIGEgPGVtPnF1YWRyYXRpYyByZXNpZHVlIG1vZCBwPFwvZW0+IGlmIHRoZXJlIGlzIGFuIGludGVnZXIgXFwoeFxcKSBzdWNoIHRoYXQ8XC9wPlxyXG5cclxuPHA+XFxbeF4yIFxcZXF1aXYgYSBcXHBtb2R7cH1cXF08XC9wPlxyXG5cclxuPHA+YW5kIGEgcXVhZHJhdGljIG5vbiByZXNpZHVlIG90aGVyd2lzZS4gTGFncmFuZ2UgKDE3NTItMTgzMykgaW50cm9kdWNlZCB0aGUgZm9sbG93aW5nIG5vdGF0aW9uLCBjYWxsZWQgdGhlICZsZHF1bztMZWdlbmRyZSBzeW1ib2wmcmRxdW87OjxcL3A+XHJcblxyXG48cD5cXFtcXGxlZnQoXFxmcmFje2F9e3B9XFxyaWdodCkgPSZuYnNwOzxiciBcLz5cclxuXFxiZWdpbntjYXNlc308YnIgXC8+XHJcbiZuYnNwOzEgJmFtcDsgXFx0ZXh0eyBpZiB9IGEgXFx0ZXh0eyBpcyBhIHF1YWRyYXRpYyByZXNpZHVlIG1vZCB9IHAgXFxcXDxiciBcLz5cclxuLTEgJmFtcDsgXFx0ZXh0eyBpZiB9IGEgXFx0ZXh0eyBpcyBhIHF1YWRyYXRpYyBub24gcmVzaWR1ZSBtb2QgfSBwIFxcXFw8YnIgXC8+XHJcblxcZW5ke2Nhc2VzfVxcXTxcL3A+XHJcblxyXG48cD5Gb3IgdGhlIGNhbGN1bGF0aW9uIG9mIHRoZXNlIHN5bWJvbCB0aGVyZSBhcmUgdGhlIGZvbGxvd2luZyBydWxlcywgdmFsaWQgb25seSBmb3IgZGlzdGluY3QgPHN0cm9uZz5vZGQ8XC9zdHJvbmc+IHByaW1lIG51bWJlcnMgXFwocFxcKSwgXFwocVxcKSBhbmQgaW50ZWdlcnMgXFwoYVxcKSwgXFwoYlxcKSBub3QgZGl2aXNpYmxlIGJ5IFxcKHBcXCk6PFwvcD5cclxuXHJcbjxvbD5cclxuXHQ8bGk+XFwoXFxsZWZ0KFxcZnJhY3thYn17cH1cXHJpZ2h0KSA9IFxcbGVmdChcXGZyYWN7YX17cH1cXHJpZ2h0KVxcbGVmdChcXGZyYWN7Yn17cH1cXHJpZ2h0KVxcKTxcL2xpPlxyXG5cdDxsaT5cXChcXGxlZnQoXFxmcmFjezF9e3B9XFxyaWdodCkgPSAxXFwpPFwvbGk+XHJcblx0PGxpPlxcKGEgXFxlcXVpdiBiIFxccG1vZHtwfSBcXFJpZ2h0YXJyb3cgXFxsZWZ0KFxcZnJhY3thfXtwfVxccmlnaHQpID0gXFxsZWZ0KFxcZnJhY3tifXtwfVxccmlnaHQpXFwpPFwvbGk+XHJcblx0PGxpPlxcKFxcbGVmdChcXGZyYWN7LTF9e3B9XFxyaWdodCkgPSAoLTEpXnsocC0xKVwvMn0sIFxcbGVmdChcXGZyYWN7Mn17cH1cXHJpZ2h0KSA9ICgtMSleeyhwXjItMSlcLzh9XFwpPFwvbGk+XHJcblx0PGxpPlxcKFxcbGVmdChcXGZyYWN7cH17cX1cXHJpZ2h0KVxcbGVmdChcXGZyYWN7cX17cH1cXHJpZ2h0KSA9ICgtMSleeyhwLTEpKHEtMSlcLzR9XFwpPFwvbGk+XHJcbjxcL29sPlxyXG5cclxuPHA+VGhlIHN0YXRlbWVudHMgMS4gdG8gMy4gYXJlIG9idmlvdXMgZnJvbSB0aGUgZGVcdWZiMDFuaXRpb24sIDQuIGlzIGNhbGxlZCB0aGUgQ29tcGxldGlvbiBUaGVvcmVtLCBhbmQgNS4gaXMgdGhlIGZhbW91cyBMYXcgb2YgUXVhZHJhdGljIFJlY2lwcm9jaXR5IGZvciB3aGljaCBHYXVzcyBoaW1zZWxmIGdhdmUgbm8gbGVzcyB0aGFuIHNpeCBkaWZmZXJlbnQgcHJvb2ZzIGluIHRoZSAmbGRxdW87RGlzcXVpc2l0aW9uZXMgQXJpdGhtZXRpY2FlJnJkcXVvOy4gS25vd2luZyB0aGVzZSBmYWN0cywgb25lIGNhbiBjYWxjdWxhdGUgYWxsIHBvc3NpYmxlIExlZ2VuZHJlIHN5bWJvbHMgYXMgaW4gdGhlIGZvbGxvd2luZyBleGFtcGxlOjxcL3A+XHJcblxyXG48cD5cXFtcXGxlZnQoXFxmcmFjezI5fXs3OX1cXHJpZ2h0KSA9ICgtMSleezc4XFxjZG90MjhcLzR9IFxcbGVmdChcXGZyYWN7Nzl9ezI5fVxccmlnaHQpICZuYnNwOz0gXFxsZWZ0KFxcZnJhY3s3OX17Mjl9XFxyaWdodCkgPSBcXGxlZnQoXFxmcmFjey04fXs3OX1cXHJpZ2h0KSA9IFxcbGVmdChcXGZyYWN7LTF9ezI5fVxccmlnaHQpIFxcbGVmdChcXGZyYWN7Mn17Mjl9XFxyaWdodCleezN9ID0gXFxsZWZ0KFxcZnJhY3stMX17Mjl9XFxyaWdodCkgXFxsZWZ0KFxcZnJhY3syfXsyOX1cXHJpZ2h0KSBcXFxcID0gKC0xKV57MjhcLzJ9KC0xKV57KDI5XjItMSlcLzh9ID0gKC0xKV57MTR9KC0xKV57MTA1fSA9IC0xXFxdPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5UaGUgZmlyc3QgbGluZSBjb250YWlucyB0aGUgbnVtYmVyIG9mIHNjZW5hcmlvcy4mbmJzcDs8XC9wPlxyXG5cclxuPHA+Rm9yIGVhY2ggc2NlbmFyaW8sIHRoZXJlIGlzIG9uZSBsaW5lIGNvbnRhaW5pbmcgdGhlIGludGVnZXJzIFxcKGFcXCkgYW5kIFxcKHBcXCkgc2VwYXJhdGVkIGJ5IGEgc2luZ2xlIGJsYW5rLCB3aGVyZSBcXCgyICZsdDsgcCAmbHQ7IDEwXjlcXCkgaXMgYW4gb2RkIHByaW1lLCBhbmQgXFwoYVxcKSBzYXRpc1x1ZmIwMWVzIGJvdGggJm5ic3A7XFwoYSBcXG5vdFxcZXF1aXYgMCBcXHBtb2R7cH1cXCkgYW5kIFxcKFxcbGVmdHwgYSBcXHJpZ2h0fCBcXGxlIDEwXjlcXCkuPFwvcD5cclxuIiwib3V0cHV0IjoiPHA+U3RhcnQgdGhlIG91dHB1dCBmb3IgZXZlcnkgc2NlbmFyaW8gd2l0aCBhIGxpbmUgY29udGFpbmluZyAmbGRxdW87U2NlbmFyaW8gI2k6JnJkcXVvOywgd2hlcmUgaSBpcyB0aGUgbnVtYmVyIG9mIHRoZSBzY2VuYXJpbyBzdGFydGluZyBhdCAxLiBUaGVuIHByaW50IGEgc2luZ2xlIGxpbmUgY29udGFpbmluZyZuYnNwO1xcKFxcbGVmdChcXGZyYWN7YX17cH1cXHJpZ2h0KVxcKVx1MDAxMSwgZm9sbG93ZWQgYnkgYSBibGFuayBsaW5lLjxcL3A+XHJcbiIsImhpbnQiOiIiLCJvcmlnaW5hbCI6IjEiLCJwcm9ibGVtX2xhbmdfY29kZSI6Ilx1YzYwMVx1YzViNCJ9XQ==

출처

University > Tu-Darmstadt Programming Contest > TUD Contest 2003 7번

채점

  • 제출한 후 다른 소스를 제출하려면 3초가 지나야 한다.