시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 0 0 0 0.000%

## 문제

Consider an expression E, containing integer constants from 0 to 9, variables from a to z, and the following operations: addition, multiplication and exponentiation with a constant exponent. Quite surprisingly, each of the variables a, b, . . . , z appears in the expression E at most once. For a given prime number p, we would like to know how many roots modulo p the polynomial represented by this expression has. In other words, we want to count the number of ways in which integers from 0 to p − 1 can be assigned to the variables in E, so that the value of E is divisible by p. Since the number of such roots can turn out large, it suffices to output it modulo 30 011.

For example, the polynomial represented by the following expression:

E = ((a + y) · (z + 8))2

has 15 roots modulo p = 3, among which the roots:

(a = 0; y = 0; z = 0); (a = 1; y = 2; z = 0); (a = 2; y = 0; z = 1)

can be found.

More formally, an expression is defined as follows:

• Each integer constant 0, 1, . . . , 9 is an expression.
• Each variable a, b, . . . , z is an expression.
• If A and B are any expressions, then each of (A+B) and (A*B) is also an expression: the first is the sum
• of expressions A and B, and the second is their product.
• If A is any expression, and B is an integer constant from 2, 3, . . . , 9, then (A^B) is also an expression: the expression A raised to the power of B.

## 입력

The first line of input contains one prime number p (2 ≤ p < 15 000). The second line contains an expression E as specified above, described by a sequence of at most 300 characters 0, 1, . . . , 9, a, b, . . . , z, +, *, ^, (, ), without any white space.

## 출력

Let k denote the number of roots modulo p of the polynomial E. Your program should output one non-negative integer, k mod 30 011.

## 예제 입력 1

3
(((a+y)*(z+8))^2)


## 예제 출력 1

15