시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 128 MB 0 0 0 0.000%

문제

Dawno, dawno temu, w odległej galaktyce istniały dwa państwa, które postanowiły zawrzeć sojusz. Każde z państw obejmowało pewną liczbę planet. Niektóre z planet były połączone wygodnymi tunelami nadprzestrzennymi I generacji. Każdy tunel łączył dwie planety i pozwalał na odbywanie podróży pasażerskich między nimi w krótkim czasie.

Pewnego dnia naukowcy odkryli tunele nadprzestrzenne II generacji, które pozwalały odbywać podróże w jeszcze krótszym czasie. Ulepszenie tunelu starszego typu do tunelu II generacji kosztowało wszędzie tyle samo. Politycy obu państw postanowili umocnić sojusz ulepszając do tuneli II generacji niektóre tunele I generacji łączące planety z różnych państw. Aby żadna planeta nie czuła się skrzywdzona, ustalono, że każda planeta, która już posiadała jakiś tunel I generacji łączący ją z planetą przeciwnego państwa, powinna mieć ulepszony przynajmniej jeden z tych tuneli. Przystąpiono do realizacji planów, ale wydano zbyt dużo pieniędzy, oba państwa zbankrutowały, sojusz się rozpadł, a w galaktyce zapanował kosmiczny chaos.

Obecnie niektórzy historycy badający tamte wydarzenia uważają, że ulepszono wówczas zbyt wiele tuneli, a całego zamieszania można było uniknąć. Z chęcią dowiedzieliby się, jaka była minimalna liczba tuneli, które trzeba było unowocześnić, by spełnić ustalenia polityków. Twoim zadaniem będzie im w tym pomóc.

Napisz program, który:

  • wczyta ze standardowego wejścia opis sieci tuneli I generacji,
  • znajdzie minimalną liczbę tuneli, które należało ulepszyć, aby spełnić wymagania ustalone przez polityków,
  • zapisze wynik na standardowe wyjście.

입력

W pierwszym wierszu znajdują się dwie liczby całkowite m i n, oddzielone pojedynczym odstępem i określające odpowiednio liczby planet w pierwszym i drugim państwie, 1 ≤ m, n ≤ 2 000. Przyjmujemy, że planety w pierwszym państwie są ponumerowane liczbami całkowitymi od 1 do m, natomiast w drugim liczbami całkowitymi od m + 1 do n + m. Drugi wiersz zawiera jedną liczbę całkowitą k, 1 ≤ k ≤ 10 000. Jest to liczba tuneli I generacji. Następne k wierszy zawiera opisy tuneli. Pojedynczy wiersz opisuje jeden tunel i zawiera parę liczb a, b oddzielonych pojedynczym odstępem, gdzie a i b są numerami planet połączonych tunelem. Zakładamy, że żaden tunel nie łączy planety z nią samą i że żadna para planet nie jest połączona kilkoma tunelami.

출력

W pierwszym i jedynym wierszu wyjścia powinna znaleźć się jedna liczba całkowita, będąca minimalną liczbą tuneli, które należało ulepszyć.

예제 입력 1

2 1
2
1 3
2 3

예제 출력 1

2