시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
1 초 32 MB 841 236 144 26.816%

문제

일직선상에 N개의 전봇대가 한 줄로 서있다. 편의상, 일직선을 x-축이라 하고, 전봇대가 서 있는 위치 x0, x1, ..., xN-1은 x-축 상의 x-좌표라고 하자. x0는 항상 0이고 xi(i ≥ 1)는 양의 정수라고 가정한다.

이 전봇대들을 이웃한 두 전봇대 사이의 거리가 모두 일정하도록 일부 전봇대들을 옮기려고 한다. 이때 이동해야하는 전봇대들의 거리의 합이 최소가 되도록 해야 한다. 단, x0에 위치한 전봇대는 움직일 수 없고, 이동하는 전봇대들은 정수 좌표 위치로만 이동 가능하다. 

예를 들어, 아래의 그림 1과 같이 전봇대가 주어져 있다고 하자.

이 경우 그림 2에서와 같이 x-좌표 6과 9에 위치한 전봇대를 각각 x-좌표 8과 12인 곳으로 이동하면, 모든 이웃한 전봇대들의 거리는 4로 같고 전봇대의 이동 거리의 합은 5이다. 

하지만 그림 3과 같이 x-좌표 4에 위치한 전봇대만을 x-좌표 3인 곳으로 이동하면, 이웃한 전봇대들의 거리는 모두 3이고 전봇대의 이동 거리의 합은 1이다.

전봇대들의 위치 x0, x1, ..., xN-1이 주어지면, 모든 이웃한 전봇대들의 거리가 같도록 전봇대들을 이동할 때(x0에 위치한 전봇대는 고정), 이동 거리의 합이 최소가 되도록 하는 프로그램을 작성하시오.

입력

입력의 첫 줄은 전봇대의 수 N (1 ≤ N ≤ 100,000)이 주어진다. 두 번째 줄에는 전봇대의 위치를 나타내는 N개의 서로 다른 x-좌표 xi(i = 0, ..., N-1)가 빈칸을 사이에 두고 오름차순으로 주어진다. xi는 정수이고, 1 ≤ xi ≤ 1,000,000,000 이다.

출력

출력은 단 한 줄이며, 모든 이웃한 전봇대들의 거리가 같도록 전봇대들의 이동거리 합의 최솟값을 출력한다.

예제 입력

4
0 4 6 9

예제 출력

1

힌트

중간 계산 결과와 출력할 값이 32비트 정수형 범위를 벗어날 수 있으니 64비트 정수형을 이용할 것을 권장한다.

출처

Olympiad > 한국정보올림피아드 > KOI 2013 > 고등부 3번

  • 문제의 오타를 찾은 사람: travis01