시간 제한메모리 제한제출정답맞힌 사람정답 비율
10 초 128 MB79141020.408%

## 문제

Let us compare two triples a = (xa, ya, za) and b = (xb, yb, zb) by a partial order ≺ defined as follows.

a ≺ b ⇐⇒ xa < xb and ya < yb and za < zb

Your mission is to find, in the given set of triples, the longest ascending series a1 ≺ a2 ≺ ··· ≺ ak.

## 입력

The input is a sequence of datasets, each specifying a set of triples formatted as follows.

m n A B
x1 y1 z1
x2 y2 z2
.
.
.
xm ym zm


Here, m, n, A and B in the first line, and all of xi, yi and zi (i = 1, . . . , m) in the following lines are non-negative integers.

Each dataset specifies a set of m + n triples. The triples p1 through pm are explicitly specified in the dataset, the i-th triple pi being (xi, yi, zi). The remaining n triples are specified by parameters A and B given to the following generator routine.

int a = A, b = B, C = ~(1<<31), M = (1<<16)-1;
int r() {
a = 36969 * (a & M) + (a >> 16);
b = 18000 * (b & M) + (b >> 16);
return (C & ((a << 16) + b)) % 1000000;
}


Repeated 3n calls of r() defined as above yield values of xm+1, ym+1, zm+1, xm+2, ym+2, zm+2, ..., xm+n, ym+n, and zm+n, in this order.

You can assume that 1 ≤ m + n ≤ 3 × 105, 1 ≤ A, B ≤ 216, and 0 ≤ xk, yk, zk < 106 for 1 ≤ k ≤ m + n.

The input ends with a line containing four zeros. The total of m + n for all the datasets does not exceed 2 × 106.

## 출력

For each dataset, output the length of the longest ascending series of triples in the specified set. If pi1 ≺ pi2 ≺ ··· ≺ pik is the longest, the answer should be k.

## 예제 입력 1

6 0 1 1
0 0 0
0 2 2
1 1 1
2 0 2
2 2 0
2 2 2
5 0 1 1
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
10 0 1 1
3 0 0
2 1 0
2 0 1
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3
0 10 1 1
0 0 0 0


## 예제 출력 1

3
5
1
3