시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
2 초 256 MB 6 3 2 40.000%

## 문제

The harmonic mean of a sequence of positive integers x1, · · · , xN is

$H\left(x_1, \cdots, x_N\right) = \left( \frac{\sum_{i=1}^{N}{x_i^{-1}}}{N}\right)^{-1} \text{.}$

Vera classifies an array of positive integers A = [A1, · · · , AN] of length N as K-mean-sorted if M(i) ≥ M(i + 1) for 1 ≤ i ≤ N − K where

$M\left(i\right) = H\left(A_i, \cdots, A_{i+K-1}\right) \text{.}$

A permutation P is an ordered set of integers P1, P2, · · · , PN , consisting of N distinct positive integers, each of which are at most N.

Permutation P is lexicographically smaller than permutation Q if there is an i (1 ≤ i ≤ N), such that Pi < Qi, and for any j (1 ≤ j < i) Pj = Qj.

Given integers N and K, help Vera find the lexicographically smallest permutation P of integers 1 to N such that P is K-mean-sorted but not L-mean-sorted for 1 ≤ L ≤ N − 1, L ≠ K.

If no such permutation exists output 0.

## 입력

The input will be in the format:

N K

Constraints:

• 2 ≤ N ≤ 100
• 1 ≤ K ≤ N − 1
• N, K are integers

## 출력

Output one line with the desired permutation. If such permutation does not exist output one line with 0.

## 예제 입력 1

3 2


## 예제 출력 1

2 3 1


## 예제 입력 2

4 1


## 예제 출력 2

0