시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율
3 초 256 MB 24 15 13 61.905%

문제

JOI 카레 매점은 매우 긴 난(인도의 납작한 빵)을 판매하는 것으로 유명하다. 난에는 $L$개의 맛이 있으며, 1번부터 $L$번까지 번호가 붙어 있다. 난 중에서 "JOI 스페셜 난"이 제일 인기가 있다. 길이가 $L$cm 이고, 왼쪽에서 $j-1$cm 부터 $j$cm 까지 부분에는 $j$번 ($1\le j \le L$) 맛으로 되어 있다.

$N$명의 사람이 JOI 카레 매점에 왔다. 그들의 취향은 다른 사람과 다르다. 구체적으로, $i$ 번째 ($1 \le i \le N$) 사람이 $j$번 ($1 \le j \le L$) 맛의 난을 먹었을 경우에는, 1 cm당 $V_{i, j}$의 행복도를 얻을 것이다.
그들은 하나의 JOI 스페셜 난을 주문했다. 그들은 난을 다음과 같은 방법으로 나누어 가질 것이다.

  1. $0 < X_1 < X_2 < \cdots < X_{N-1} < L$을 만족하는 $N-1$개의 분수 $X_1,\ \cdots,\ X_{N-1}$를 고른다.
  2. $N$개의 정수 $P_1,\ \cdots, \ P_N$을 고른다. 이는 $1, \ \cdots, \ N$의 순열이어야 한다.
  3. 각 $k$ ($1 \le k \le N-1$)에 대해서, 난을 $X_k$지점에서 자른다. 난은 $N$개의 조각으로 나누어질 것이다.
  4. 각 $k$ ($1 \le k \le N$)에 대해서, $P_k$번째 사람에게 $X_{k-1}$과 $X_k$ 사이의 조각을 준다. 우리는 $X_0$을 0, $X_N$을 $L$이라고 생각할 것이다.

우리는 난을 공평하게 나누고 싶다. 우리는 각 사람이 혼자 JOI 스페셜 난을 모두 먹었을 때 얻는 행복도의 $1/N$이상을 얻었을 경우, 분배 방식이 공평하다고 할 것이다.

$N$명의 사람의 선호가 주어졌을 때, 난을 공평하게 나누는 방법이 있는가를 출력하여라. 있는 경우, 난을 공평하게 나누는 방법에 대해 출력하여라.

입력

표준 입력에서 다음과 같은 형식으로 주어진다. 모든 수는 정수이다.

$N$ $L$

$V_{1,1}$ $V_{1, 2}$ $\cdots$ $V_{1, L}$

$\vdots$

$V_{N,1}$ $V_{N, 2}$ $\cdots$ $V_{N, L}$

출력

난을 공평하게 나누는 방법이 없다면, -1을 첫째 줄에 출력하여라. 공평하게 나눌 수 있다면, 나누는 방법을 나타내는 $N-1$개의 분수 $X_1,\ \cdots,\ X_{N-1}$과 $N$개의 정수 $P_1, \cdots, P_N$을 다음 형식으로 출력하여라.

$A_1$ $B_1$

$A_2$ $B_2$

$\vdots$

$A_{N-1}$ $B_{N-1}$

$P_1$ $P_2$ $\cdots$ $P_N$

$A_i$, $B_i$는 $X_i = \dfrac{A_i}{B_i}$ ($1 \le i \le N$)를 만족하는 정수 쌍이다. 이 정수는 출력 제한을 따라야 한다.

제한

입력 제한

  • $1 \le N \le 2000$.
  • $0 \le L \le 2000$.
  • $1 \le V_{i, j} \le 100\ 000$ ($1 \le i \le N,\ 1 \le j \le L$).

출력 제한

난을 공평한 방식으로 나눈 방법이 존재한다면, 출력은 다음 제한을 따라야 한다.

  • $1 \le B_i \le 1\ 000\ 000\ 000$. ($1 \le i \le N$)
  • $0 \le \dfrac{A_1}{B_1} < \dfrac{A_2}{B_2} \cdots < \dfrac{A_{N-1}}{B_{N-1}} < L$.
  • $P_1, \ \cdots, \ P_N$은 $1, \ \cdots, \ N$의 순열이다.
  • 분배에서, $i$번째 사람이 가지는 행복도의 양은 $\dfrac{V_{i, 1}+V_{i,2}+\cdots+V_{i,L}}{N}$ 이상 이어야 한다.

$A_i$와 $B_i$는 서로소일 필요는 없다.
아래 제한 하에서, 공평한 분배가 존재 할 경우 $1 \le B_i \le 1\ 000\ 000\ 000$을 만족하는 출력이 존재함을 증명할 수 있다.

예제 입력 1

2 5
2 7 1 8 2
3 1 4 1 5

예제 출력 1

14 5
2 1

이 예제에서, 모든 난을 먹었을 때, 첫째 사람은 2 + 7 + 1 + 8 + 2 = 20의 행복도를 가지고 둘째 사람은 3 + 1 + 4 + 1 + 5 = 14의 행복도를 가진다. 즉, 첫째 사람이 $\dfrac{20}{2} = 10$ 이상의 행복도를 가지고 둘째 사람이 $\dfrac{14}{2} = 7$ 이상의 행복도를 가지면, 분배는 공평하다.

난을 $\dfrac{14}{5}$에서 나누면, 첫째 사람은 $1 \times \dfrac{1}{5} + 8 + 2 = \dfrac{51}{5}$의 행복도를 얻고, 둘째 사람은 $3 + 1 + 4 \times \dfrac{4}{5} = \dfrac{36}{5}$의 행복도를 얻는다. 그러므로, 이것은 공평한 분배이다.

예제 입력 2

7 1
1
2
3
4
5
6
7

예제 출력 2

1 7
2 7
3 7
4 7
5 7
6 7
3 1 4 2 7 6 5

이 예제에서는 맛이 하나 뿐이다. 난을 크기가 같은 7개의 부분으로 자르면, $P_1, \ \cdots, \  P_N$과 관계 없이 분배가 공정하다.

예제 입력 3

5 3
2 3 1
1 1 1
2 2 1
1 2 2
1 2 1

예제 출력 3

15 28
35 28
50 28
70 28
3 1 5 2 4

$A_i$와 $B_i$가 서로소 일 필요는 없다. ($1 \le i \le N$)

W3sicHJvYmxlbV9pZCI6IjE3NjcwIiwicHJvYmxlbV9sYW5nIjoiMCIsInRpdGxlIjoiXHViMDljIiwiZGVzY3JpcHRpb24iOiI8cD5KT0kgXHVjZTc0XHViODA4IFx1YjllNFx1YzgxMFx1Yzc0MCBcdWI5ZTRcdWM2YjAgXHVhZTM0IFx1YjA5YyhcdWM3NzhcdWIzYzRcdWM3NTggXHViMGE5XHVjNzkxXHVkNTVjIFx1YmU3NSlcdWM3NDQgXHVkMzEwXHViOWU0XHVkNTU4XHViMjk0IFx1YWM4M1x1YzczY1x1Yjg1YyBcdWM3MjBcdWJhODVcdWQ1NThcdWIyZTQuIFx1YjA5Y1x1YzVkMFx1YjI5NCAkTCRcdWFjMWNcdWM3NTggXHViOWRiXHVjNzc0IFx1Yzc4OFx1YzczY1x1YmE3MCwgMVx1YmM4OFx1YmQ4MFx1ZDEzMCAkTCRcdWJjODhcdWFlNGNcdWM5YzAgXHViYzg4XHVkNjM4XHVhYzAwIFx1YmQ5OVx1YzViNCBcdWM3ODhcdWIyZTQuIFx1YjA5YyBcdWM5MTFcdWM1ZDBcdWMxMWMgJnF1b3Q7Sk9JIFx1YzJhNFx1ZDM5OFx1YzE1YyBcdWIwOWMmcXVvdDtcdWM3NzQgXHVjODFjXHVjNzdjIFx1Yzc3OFx1YWUzMFx1YWMwMCBcdWM3ODhcdWIyZTQuIFx1YWUzOFx1Yzc3NFx1YWMwMCAkTCRjbSBcdWM3NzRcdWFjZTAsIFx1YzY3Y1x1Y2FiZFx1YzVkMFx1YzExYyAkai0xJGNtIFx1YmQ4MFx1ZDEzMCAkaiRjbSBcdWFlNGNcdWM5YzAgXHViZDgwXHViZDg0XHVjNWQwXHViMjk0ICRqJFx1YmM4OCAoJDFcXGxlIGogXFxsZSBMJCkgXHViOWRiXHVjNzNjXHViODVjIFx1YjQxOFx1YzViNCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuXHJcbjxwPiROJFx1YmE4NVx1Yzc1OCBcdWMwYWNcdWI3OGNcdWM3NzQgSk9JIFx1Y2U3NFx1YjgwOCBcdWI5ZTRcdWM4MTBcdWM1ZDAgXHVjNjU0XHViMmU0LiBcdWFkZjhcdWI0ZTRcdWM3NTggXHVjZGU4XHVkNWE1XHVjNzQwIFx1YjJlNFx1Yjk3OCBcdWMwYWNcdWI3OGNcdWFjZmMgXHViMmU0XHViOTc0XHViMmU0LiBcdWFkNmNcdWNjYjRcdWM4MDFcdWM3M2NcdWI4NWMsICRpJCBcdWJjODhcdWM5ZjggKCQxIFxcbGUgaSBcXGxlIE4kKSBcdWMwYWNcdWI3OGNcdWM3NzQgJGokXHViYzg4ICgkMSBcXGxlIGogXFxsZSBMJCkgXHViOWRiXHVjNzU4IFx1YjA5Y1x1Yzc0NCBcdWJhMzlcdWM1YzhcdWM3NDQgXHVhY2JkXHVjNmIwXHVjNWQwXHViMjk0LCAxIGNtXHViMmY5ICRWX3tpLCBqfSRcdWM3NTggXHVkNTg5XHViY2Y1XHViM2M0XHViOTdjIFx1YzViYlx1Yzc0NCBcdWFjODNcdWM3NzRcdWIyZTQuPGJyIFwvPlxyXG5cdWFkZjhcdWI0ZTRcdWM3NDAgXHVkNTU4XHViMDk4XHVjNzU4IEpPSSBcdWMyYTRcdWQzOThcdWMxNWMgXHViMDljXHVjNzQ0IFx1YzhmY1x1YmIzOFx1ZDU4OFx1YjJlNC4gXHVhZGY4XHViNGU0XHVjNzQwIFx1YjA5Y1x1Yzc0NCBcdWIyZTRcdWM3NGNcdWFjZmMgXHVhYzE5XHVjNzQwIFx1YmMyOVx1YmM5NVx1YzczY1x1Yjg1YyBcdWIwOThcdWIyMDRcdWM1YjQgXHVhYzAwXHVjOWM4IFx1YWM4M1x1Yzc3NFx1YjJlNC48XC9wPlxyXG5cclxuPG9sPlxyXG5cdDxsaT4kMCAmbHQ7IFhfMSAmbHQ7IFhfMiAmbHQ7IFxcY2RvdHMgJmx0OyBYX3tOLTF9ICZsdDsgTCRcdWM3NDQgXHViOWNjXHVjODcxXHVkNTU4XHViMjk0ICROLTEkXHVhYzFjXHVjNzU4IFx1YmQ4NFx1YzIxOCAkWF8xLFxcIFxcY2RvdHMsXFwgWF97Ti0xfSRcdWI5N2MgXHVhY2UwXHViOTc4XHViMmU0LjxcL2xpPlxyXG5cdDxsaT4kTiRcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4ICRQXzEsXFwgXFxjZG90cywgXFwgUF9OJFx1Yzc0NCBcdWFjZTBcdWI5NzhcdWIyZTQuIFx1Yzc3NFx1YjI5NCAkMSwgXFwgXFxjZG90cywgXFwgTiRcdWM3NTggXHVjMjFjXHVjNWY0XHVjNzc0XHVjNWI0XHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9saT5cclxuXHQ8bGk+XHVhYzAxICRrJCAoJDEgXFxsZSBrIFxcbGUgTi0xJClcdWM1ZDAgXHViMzAwXHVkNTc0XHVjMTFjLCBcdWIwOWNcdWM3NDQgJFhfayRcdWM5YzBcdWM4MTBcdWM1ZDBcdWMxMWMgXHVjNzkwXHViOTc4XHViMmU0LiBcdWIwOWNcdWM3NDAgJE4kXHVhYzFjXHVjNzU4IFx1Yzg3MFx1YWMwMVx1YzczY1x1Yjg1YyBcdWIwOThcdWIyMDRcdWM1YjRcdWM5YzggXHVhYzgzXHVjNzc0XHViMmU0LjxcL2xpPlxyXG5cdDxsaT5cdWFjMDEgJGskICgkMSBcXGxlIGsgXFxsZSBOJClcdWM1ZDAgXHViMzAwXHVkNTc0XHVjMTFjLCAkUF9rJFx1YmM4OFx1YzlmOCBcdWMwYWNcdWI3OGNcdWM1ZDBcdWFjOGMgJFhfe2stMX0kXHVhY2ZjICRYX2skIFx1YzBhY1x1Yzc3NFx1Yzc1OCBcdWM4NzBcdWFjMDFcdWM3NDQgXHVjOTAwXHViMmU0LiBcdWM2YjBcdWI5YWNcdWIyOTQgJFhfMCRcdWM3NDQgMCwgJFhfTiRcdWM3NDQgJEwkXHVjNzc0XHViNzdjXHVhY2UwIFx1YzBkZFx1YWMwMVx1ZDU2MCBcdWFjODNcdWM3NzRcdWIyZTQuPFwvbGk+XHJcbjxcL29sPlxyXG5cclxuPHA+XHVjNmIwXHViOWFjXHViMjk0IFx1YjA5Y1x1Yzc0NCBcdWFjZjVcdWQzYzlcdWQ1NThcdWFjOGMgXHViMDk4XHViMjA0XHVhY2UwIFx1YzJmNlx1YjJlNC4gXHVjNmIwXHViOWFjXHViMjk0IFx1YWMwMSBcdWMwYWNcdWI3OGNcdWM3NzQgXHVkNjNjXHVjNzkwIEpPSSBcdWMyYTRcdWQzOThcdWMxNWMgXHViMDljXHVjNzQ0IFx1YmFhOFx1YjQ1MCBcdWJhMzlcdWM1YzhcdWM3NDQgXHViNTRjIFx1YzViYlx1YjI5NCBcdWQ1ODlcdWJjZjVcdWIzYzRcdWM3NTggJDFcL04kXHVjNzc0XHVjMGMxXHVjNzQ0IFx1YzViYlx1YzVjOFx1Yzc0NCBcdWFjYmRcdWM2YjAsIFx1YmQ4NFx1YmMzMCBcdWJjMjlcdWMyZGRcdWM3NzQgPHN0cm9uZz5cdWFjZjVcdWQzYzlcdWQ1NThcdWIyZTQ8XC9zdHJvbmc+XHVhY2UwIFx1ZDU2MCBcdWFjODNcdWM3NzRcdWIyZTQuPFwvcD5cclxuXHJcbjxwPiROJFx1YmE4NVx1Yzc1OCBcdWMwYWNcdWI3OGNcdWM3NTggXHVjMTIwXHVkNjM4XHVhYzAwIFx1YzhmY1x1YzViNFx1Yzg0Y1x1Yzc0NCBcdWI1NGMsIFx1YjA5Y1x1Yzc0NCBcdWFjZjVcdWQzYzlcdWQ1NThcdWFjOGMgXHViMDk4XHViMjA0XHViMjk0IFx1YmMyOVx1YmM5NVx1Yzc3NCBcdWM3ODhcdWIyOTRcdWFjMDBcdWI5N2MgXHVjZDljXHViODI1XHVkNTU4XHVjNWVjXHViNzdjLiBcdWM3ODhcdWIyOTQgXHVhY2JkXHVjNmIwLCBcdWIwOWNcdWM3NDQgXHVhY2Y1XHVkM2M5XHVkNTU4XHVhYzhjIFx1YjA5OFx1YjIwNFx1YjI5NCBcdWJjMjlcdWJjOTVcdWM1ZDAgXHViMzAwXHVkNTc0IFx1Y2Q5Y1x1YjgyNVx1ZDU1OFx1YzVlY1x1Yjc3Yy48XC9wPlxyXG4iLCJpbnB1dCI6IjxwPlx1ZDQ1Y1x1YzkwMCBcdWM3ODVcdWI4MjVcdWM1ZDBcdWMxMWMgXHViMmU0XHVjNzRjXHVhY2ZjIFx1YWMxOVx1Yzc0MCBcdWQ2MTVcdWMyZGRcdWM3M2NcdWI4NWMgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWJhYThcdWI0ZTAgXHVjMjE4XHViMjk0IFx1YzgxNVx1YzIxOFx1Yzc3NFx1YjJlNC48XC9wPlxyXG5cclxuPHA+JE4kICRMJDxcL3A+XHJcblxyXG48cD4kVl97MSwxfSQgJFZfezEsIDJ9JCAkXFxjZG90cyQgJFZfezEsIEx9JDxcL3A+XHJcblxyXG48cD4kXFx2ZG90cyQ8XC9wPlxyXG5cclxuPHA+JFZfe04sMX0kICRWX3tOLCAyfSQgJFxcY2RvdHMkICRWX3tOLCBMfSQ8XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWIwOWNcdWM3NDQgXHVhY2Y1XHVkM2M5XHVkNTU4XHVhYzhjIFx1YjA5OFx1YjIwNFx1YjI5NCBcdWJjMjlcdWJjOTVcdWM3NzQgXHVjNWM2XHViMmU0XHViYTc0LCA8dHQ+LTE8XC90dD5cdWM3NDQgXHVjY2FiXHVjOWY4IFx1YzkwNFx1YzVkMCBcdWNkOWNcdWI4MjVcdWQ1NThcdWM1ZWNcdWI3N2MuIFx1YWNmNVx1ZDNjOVx1ZDU1OFx1YWM4YyBcdWIwOThcdWIyMGMgXHVjMjE4IFx1Yzc4OFx1YjJlNFx1YmE3NCwgXHViMDk4XHViMjA0XHViMjk0IFx1YmMyOVx1YmM5NVx1Yzc0NCBcdWIwOThcdWQwYzBcdWIwYjRcdWIyOTQgJE4tMSRcdWFjMWNcdWM3NTggXHViZDg0XHVjMjE4ICRYXzEsXFwgXFxjZG90cyxcXCBYX3tOLTF9JFx1YWNmYyAkTiRcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4ICRQXzEsIFxcY2RvdHMsIFBfTiRcdWM3NDQgXHViMmU0XHVjNzRjIFx1ZDYxNVx1YzJkZFx1YzczY1x1Yjg1YyBcdWNkOWNcdWI4MjVcdWQ1NThcdWM1ZWNcdWI3N2MuPFwvcD5cclxuXHJcbjxwPiRBXzEkICRCXzEkPFwvcD5cclxuXHJcbjxwPiRBXzIkICRCXzIkPFwvcD5cclxuXHJcbjxwPiRcXHZkb3RzJDxcL3A+XHJcblxyXG48cD4kQV97Ti0xfSQgJEJfe04tMX0kPFwvcD5cclxuXHJcbjxwPiRQXzEkICRQXzIkICRcXGNkb3RzJCAkUF9OJDxcL3A+XHJcblxyXG48cD4kQV9pJCwgJEJfaSRcdWIyOTQgJFhfaSA9IFxcZGZyYWN7QV9pfXtCX2l9JCAoJDEgXFxsZSBpIFxcbGUgTiQpXHViOTdjIFx1YjljY1x1Yzg3MVx1ZDU1OFx1YjI5NCBcdWM4MTVcdWMyMTggXHVjMzBkXHVjNzc0XHViMmU0LiBcdWM3NzQgXHVjODE1XHVjMjE4XHViMjk0IFx1Y2Q5Y1x1YjgyNSBcdWM4MWNcdWQ1NWNcdWM3NDQgXHViNTMwXHViNzdjXHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwicHJvYmxlbV9sYW5nX2NvZGUiOiJcdWQ1NWNcdWFkNmRcdWM1YjQiLCJsaW1pdCI6IjxwPlx1Yzc4NVx1YjgyNSBcdWM4MWNcdWQ1NWM8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT4kMSBcXGxlIE4gXFxsZSAyMDAwJC48XC9saT5cclxuXHQ8bGk+JDAgXFxsZSBMIFxcbGUgMjAwMCQuPFwvbGk+XHJcblx0PGxpPiQxIFxcbGUgVl97aSwgan0gXFxsZSAxMDBcXCAwMDAkICgkMSBcXGxlIGkgXFxsZSBOLFxcIDEgXFxsZSBqIFxcbGUgTCQpLjxcL2xpPlxyXG48XC91bD5cclxuXHJcbjxwPlx1Y2Q5Y1x1YjgyNSBcdWM4MWNcdWQ1NWM8XC9wPlxyXG5cclxuPHA+XHViMDljXHVjNzQ0IFx1YWNmNVx1ZDNjOVx1ZDU1YyBcdWJjMjlcdWMyZGRcdWM3M2NcdWI4NWMgXHViMDk4XHViMjA4IFx1YmMyOVx1YmM5NVx1Yzc3NCBcdWM4NzRcdWM3YWNcdWQ1NWNcdWIyZTRcdWJhNzQsIFx1Y2Q5Y1x1YjgyNVx1Yzc0MCBcdWIyZTRcdWM3NGMgXHVjODFjXHVkNTVjXHVjNzQ0IFx1YjUzMFx1Yjc3Y1x1YzU3YyBcdWQ1NWNcdWIyZTQuPFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+JDEgXFxsZSBCX2kgXFxsZSAxXFwgMDAwXFwgMDAwXFwgMDAwJC4gKCQxIFxcbGUgaSBcXGxlIE4kKTxcL2xpPlxyXG5cdDxsaT4kMCBcXGxlIFxcZGZyYWN7QV8xfXtCXzF9ICZsdDsgXFxkZnJhY3tBXzJ9e0JfMn0gXFxjZG90cyAmbHQ7IFxcZGZyYWN7QV97Ti0xfX17Ql97Ti0xfX0gJmx0OyBMJC48XC9saT5cclxuXHQ8bGk+JFBfMSwgXFwgXFxjZG90cywgXFwgUF9OJFx1Yzc0MCAkMSwgXFwgXFxjZG90cywgXFwgTiRcdWM3NTggXHVjMjFjXHVjNWY0XHVjNzc0XHViMmU0LjxcL2xpPlxyXG5cdDxsaT5cdWJkODRcdWJjMzBcdWM1ZDBcdWMxMWMsICRpJFx1YmM4OFx1YzlmOCBcdWMwYWNcdWI3OGNcdWM3NzQgXHVhYzAwXHVjOWMwXHViMjk0IFx1ZDU4OVx1YmNmNVx1YjNjNFx1Yzc1OCBcdWM1OTFcdWM3NDAgJFxcZGZyYWN7Vl97aSwgMX0rVl97aSwyfStcXGNkb3RzK1Zfe2ksTH19e059JCBcdWM3NzRcdWMwYzEgXHVjNzc0XHVjNWI0XHVjNTdjIFx1ZDU1Y1x1YjJlNC48XC9saT5cclxuPFwvdWw+XHJcblxyXG48cD4kQV9pJFx1YzY0MCAkQl9pJFx1YjI5NCBcdWMxMWNcdWI4NWNcdWMxOGNcdWM3N2MgXHVkNTQ0XHVjNjk0XHViMjk0IFx1YzVjNlx1YjJlNC48YnIgXC8+XHJcblx1YzU0NFx1Yjc5OCBcdWM4MWNcdWQ1NWMgXHVkNTU4XHVjNWQwXHVjMTFjLCBcdWFjZjVcdWQzYzlcdWQ1NWMgXHViZDg0XHViYzMwXHVhYzAwIFx1Yzg3NFx1YzdhYyBcdWQ1NjAgXHVhY2JkXHVjNmIwICQxIFxcbGUgQl9pIFxcbGUgMVxcIDAwMFxcIDAwMFxcIDAwMCRcdWM3NDQgXHViOWNjXHVjODcxXHVkNTU4XHViMjk0IFx1Y2Q5Y1x1YjgyNVx1Yzc3NCBcdWM4NzRcdWM3YWNcdWQ1NjhcdWM3NDQgXHVjOTlkXHViYTg1XHVkNTYwIFx1YzIxOCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuIiwic2FtcGxlX2V4cGxhaW5fMSI6IjxwPlx1Yzc3NCBcdWM2MDhcdWM4MWNcdWM1ZDBcdWMxMWMsIFx1YmFhOFx1YjRlMCBcdWIwOWNcdWM3NDQgXHViYTM5XHVjNWM4XHVjNzQ0IFx1YjU0YywgXHVjY2FiXHVjOWY4IFx1YzBhY1x1Yjc4Y1x1Yzc0MCAyICsgNyArIDEgKyA4ICsgMiA9IDIwXHVjNzU4IFx1ZDU4OVx1YmNmNVx1YjNjNFx1Yjk3YyBcdWFjMDBcdWM5YzBcdWFjZTAgXHViNDU4XHVjOWY4IFx1YzBhY1x1Yjc4Y1x1Yzc0MCAzICsgMSArIDQgKyAxICsgNSA9IDE0XHVjNzU4IFx1ZDU4OVx1YmNmNVx1YjNjNFx1Yjk3YyBcdWFjMDBcdWM5YzRcdWIyZTQuIFx1Yzk4OSwgXHVjY2FiXHVjOWY4IFx1YzBhY1x1Yjc4Y1x1Yzc3NCAkXFxkZnJhY3syMH17Mn0gPSAxMCQgXHVjNzc0XHVjMGMxXHVjNzU4IFx1ZDU4OVx1YmNmNVx1YjNjNFx1Yjk3YyBcdWFjMDBcdWM5YzBcdWFjZTAgXHViNDU4XHVjOWY4IFx1YzBhY1x1Yjc4Y1x1Yzc3NCAkXFxkZnJhY3sxNH17Mn0gPSA3JCBcdWM3NzRcdWMwYzFcdWM3NTggXHVkNTg5XHViY2Y1XHViM2M0XHViOTdjIFx1YWMwMFx1YzljMFx1YmE3NCwgXHViZDg0XHViYzMwXHViMjk0IFx1YWNmNVx1ZDNjOVx1ZDU1OFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHViMDljXHVjNzQ0ICRcXGRmcmFjezE0fXs1fSRcdWM1ZDBcdWMxMWMgXHViMDk4XHViMjA0XHViYTc0LCBcdWNjYWJcdWM5ZjggXHVjMGFjXHViNzhjXHVjNzQwICQxIFxcdGltZXMgXFxkZnJhY3sxfXs1fSArIDggKyAyID0gXFxkZnJhY3s1MX17NX0kXHVjNzU4IFx1ZDU4OVx1YmNmNVx1YjNjNFx1Yjk3YyBcdWM1YmJcdWFjZTAsIFx1YjQ1OFx1YzlmOCBcdWMwYWNcdWI3OGNcdWM3NDAgJDMgKyAxICsgNCBcXHRpbWVzIFxcZGZyYWN7NH17NX0gPSBcXGRmcmFjezM2fXs1fSRcdWM3NTggXHVkNTg5XHViY2Y1XHViM2M0XHViOTdjIFx1YzViYlx1YjI5NFx1YjJlNC4gXHVhZGY4XHViN2VjXHViYmMwXHViODVjLCBcdWM3NzRcdWFjODNcdWM3NDAgXHVhY2Y1XHVkM2M5XHVkNTVjIFx1YmQ4NFx1YmMzMFx1Yzc3NFx1YjJlNC48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8yIjoiPHA+XHVjNzc0IFx1YzYwOFx1YzgxY1x1YzVkMFx1YzExY1x1YjI5NCBcdWI5ZGJcdWM3NzQgXHVkNTU4XHViMDk4IFx1YmZkMFx1Yzc3NFx1YjJlNC4gXHViMDljXHVjNzQ0IFx1ZDA2Y1x1YWUzMFx1YWMwMCBcdWFjMTlcdWM3NDAgN1x1YWMxY1x1Yzc1OCBcdWJkODBcdWJkODRcdWM3M2NcdWI4NWMgXHVjNzkwXHViOTc0XHViYTc0LCAkUF8xLCBcXCBcXGNkb3RzLCBcXCZuYnNwOyBQX04kXHVhY2ZjIFx1YWQwMFx1YWNjNCBcdWM1YzZcdWM3NzQgXHViZDg0XHViYzMwXHVhYzAwIFx1YWNmNVx1YzgxNVx1ZDU1OFx1YjJlNC48XC9wPlxyXG4iLCJzYW1wbGVfZXhwbGFpbl8zIjoiPHA+JEFfaSRcdWM2NDAgJEJfaSRcdWFjMDAgXHVjMTFjXHViODVjXHVjMThjIFx1Yzc3YyBcdWQ1NDRcdWM2OTRcdWIyOTQgXHVjNWM2XHViMmU0LiAoJDEgXFxsZSBpIFxcbGUgTiQpPFwvcD5cclxuIn0seyJwcm9ibGVtX2lkIjoiMTc2NzAiLCJwcm9ibGVtX2xhbmciOiIxIiwidGl0bGUiOiJOYWFuIiwiZGVzY3JpcHRpb24iOiI8cD5KT0kgQ3VycnkgU2hvcCBpcyBmYW1vdXMgZm9yIHNlcnZpbmcgdmVyeSBsb25nIG5hYW5zLiBUaGV5IGhhdmUgTCBraW5kcyBvZiBmbGF2b3JzLCBudW1iZXJlZCBmcm9tIDEgdGhyb3VnaCBMLCB0byBmbGF2b3IgbmFhbnMuICZsZHF1bztKT0kgU3BlY2lhbCBOYWFuJnJkcXVvOyBpcyB0aGUgbW9zdCBwb3B1bGFyIG1lbnUgaW4gdGhlIHNob3AuIFRoZSBsZW5ndGggb2YgdGhlIG5hYW4gaXMgTCBjbS4gV2UgZGVmaW5lICZsZHF1bzt0aGUgcG9zaXRpb24geCZyZHF1bzsgYXMgdGhlIHBvc2l0aW9uIG9uIHRoZSBuYWFuIHdoaWNoIGlzIHggY20gZGlzdGFudCBmcm9tIHRoZSBsZWZ0IGVuZCBvZiB0aGUgbmFhbi4gVGhlIHNlZ21lbnQgYmV0d2VlbiBwb3NpdGlvbiBqICZtaW51czsgMSBhbmQgcG9zaXRpb24gaiBpcyBmbGF2b3JlZCBieSBmbGF2b3IgaiAoMSAmbGU7IGogJmxlOyBMKS48XC9wPlxyXG5cclxuPHA+TiBwZW9wbGUgY2FtZSB0byBKT0kgQ3VycnkgU2hvcC4gVGhlaXIgcHJlZmVyZW5jZXMgYXJlIGRpZmZlcmVudCBmcm9tIGVhY2ggb3RoZXIuIFNwZWNpZmljYWxseSwgd2hlbiB0aGUgaS10aCAoMSAmbGU7IGogJmxlOyBMKSBwZXJzb24gZWF0cyBuYWFuIHdpdGggZmxhdm9yIGogKDEgJmxlOyBqICZsZTsgTCksIHRoZXkgd2lsbCBnZXQgaGFwcGluZXNzIFY8c3ViPmksIGo8XC9zdWI+IHBlciAxIGNtLiBUaGV5IG9yZGVyZWQgb25seSBvbmUgSk9JIFNwZWNpYWwgTmFhbi4gVGhleSB3aWxsIHNoYXJlIHRoZSBuYWFuIGluIHRoZSBmb2xsb3dpbmcgbWFubmVyOjxcL3A+XHJcblxyXG48b2w+XHJcblx0PGxpPkNob29zZSBOICZtaW51czsgMSByYXRpb25hbCBudW1iZXJzIFg8c3ViPjE8XC9zdWI+LCAuIC4gLiAsIFg8c3ViPk4mbWludXM7MTxcL3N1Yj4gd2hpY2ggc2F0aXNmeSAwICZsdDsgWDxzdWI+MTxcL3N1Yj4gJmx0OyBYPHN1Yj4yPFwvc3ViPiAmbHQ7ICZtaWRkb3Q7ICZtaWRkb3Q7ICZtaWRkb3Q7ICZsdDsgWDxzdWI+TiZtaW51czsxPFwvc3ViPiAmbHQ7IEwuPFwvbGk+XHJcblx0PGxpPkNob29zZSBOIGludGVnZXJzIFA8c3ViPjE8XC9zdWI+LCAuIC4gLiAsIFA8c3ViPk48XC9zdWI+IHdoaWNoIGZvcm0gYSBwZXJtdXRhdGlvbiBvZiAxLCAuIC4gLiAsIE4uPFwvbGk+XHJcblx0PGxpPkZvciBlYWNoIGsgKDEgJmxlOyBrICZsZTsgTiAmbWludXM7IDEpLCBjdXQgdGhlIG5hYW4gYXQgdGhlIHBvc2l0aW9uIFg8c3ViPms8XC9zdWI+LiBUaHVzLCB0aGUgbmFhbiB3aWxsIGJlIHNlcGFyYXRlZCBpbnRvIE4gcGllY2VzLjxcL2xpPlxyXG5cdDxsaT5Gb3IgZWFjaCBrICgxICZsZTsgayAmbGU7IE4pLCBnaXZlIHRoZSBwaWVjZSBiZXR3ZWVuIHRoZSBwb3NpdGlvbiBYPHN1Yj5rJm1pbnVzOzE8XC9zdWI+IGFuZCBwb3NpdGlvbiBYPHN1Yj5rPFwvc3ViPiB0byB0aGUgUGstdGggcGVyc29uLiBXZSBjb25zaWRlciBYPHN1Yj4wPFwvc3ViPiBhcyAwIGFuZCBYPHN1Yj5OPFwvc3ViPiBhcyBMLjxcL2xpPlxyXG48XC9vbD5cclxuXHJcbjxwPldlIHdhbnQgdG8gZGlzdHJpYnV0ZSB0aGUgbmFhbiBmYWlybHkuIFdlIHNheSBhIGRpc3RyaWJ1dGlvbiBpcyBmYWlyIGlmIGVhY2ggcGVyc29uIGdldHMgaGFwcGluZXNzIG9mIG1vcmUgdGhhbiBvciBlcXVhbCB0byAxIE4gb2YgdGhlIGFtb3VudCBvZiBoYXBwaW5lc3MgdGhleSB3aWxsIGdldCBieSBlYXRpbmcgdGhlIHdob2xlIEpPSSBTcGVjaWFsIE5hYW4uPFwvcD5cclxuXHJcbjxwPldyaXRlIGEgcHJvZ3JhbSB3aGljaCwgZ2l2ZW4gdGhlIGluZm9ybWF0aW9uIG9mIHByZWZlcmVuY2VzIG9mIE4gcGVvcGxlLCBkZXRlcm1pbmVzIGlmIGl0IGlzIHBvc3NpYmxlIHRvIGRpc3RyaWJ1dGUgdGhlIG5hYW4gaW4gYSBmYWlyIHdheSwgYW5kIGlmIGl0IGlzIHBvc3NpYmxlLCBmaW5kcyBzdWNoIGEgZmFpciB3YXkuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5SZWFkIHRoZSBmb2xsb3dpbmcgZGF0YSBmcm9tIHRoZSBzdGFuZGFyZCBpbnB1dC4gQWxsIHRoZSB2YWx1ZXMgaW4gdGhlIGlucHV0IGFyZSBpbnRlZ2Vycy48XC9wPlxyXG5cclxuPHByZT5cclxuTiBMXHJcblY8c3ViPjEsMTxcL3N1Yj4gVjxzdWI+MSwyPFwvc3ViPiAmbWlkZG90OyAmbWlkZG90OyAmbWlkZG90OyBWPHN1Yj4xLEw8XC9zdWI+XHJcbi5cclxuLlxyXG4uXHJcblY8c3ViPk4sMTxcL3N1Yj4gVjxzdWI+TiwyPFwvc3ViPiAmbWlkZG90OyAmbWlkZG90OyAmbWlkZG90OyBWPHN1Yj5OLEw8XC9zdWI+PFwvcHJlPlxyXG4iLCJvdXRwdXQiOiI8cD5Xcml0ZSB0byB0aGUgc3RhbmRhcmQgb3V0cHV0LiBJZiBpdCBpcyBpbXBvc3NpYmxlIHRvIGRpc3RyaWJ1dGUgbmFhbiBpbiBhIGZhaXIgd2F5LCB3cml0ZSAmbWludXM7MSBpbiBhIGxpbmUuIElmIGl0IGlzIHBvc3NpYmxlLCBvdXRwdXQgTiAmbWludXM7IDEgcmF0aW9uYWwgbnVtYmVycyBYPHN1Yj4xPFwvc3ViPiwgLiAuIC4gLCBYPHN1Yj5OJm1pbnVzOzE8XC9zdWI+IGFuZCBOIGludGVnZXJzIFA8c3ViPjE8XC9zdWI+LCAuIC4gLiAsIFA8c3ViPk48XC9zdWI+IHdoaWNoIHJlcHJlc2VudCBhIGZhaXIgZGlzdHJpYnV0aW9uLCBpbiB0aGUgZm9sbG93aW5nIGZvcm1hdC48XC9wPlxyXG5cclxuPHByZT5cclxuQTxzdWI+MTxcL3N1Yj4gQjxzdWI+MTxcL3N1Yj5cclxuQTxzdWI+MjxcL3N1Yj4gQjxzdWI+MjxcL3N1Yj5cclxuLlxyXG4uXHJcbi5cclxuQTxzdWI+TiZtaW51czsxPFwvc3ViPiBCPHN1Yj5OJm1pbnVzOzE8XC9zdWI+XHJcblA8c3ViPjE8XC9zdWI+IFA8c3ViPjI8XC9zdWI+ICZtaWRkb3Q7ICZtaWRkb3Q7ICZtaWRkb3Q7IFA8c3ViPk48XC9zdWI+PFwvcHJlPlxyXG5cclxuPHA+QTxzdWI+azxcL3N1Yj4gYW5kIEI8c3ViPms8XC9zdWI+IGFyZSBhIHBhaXIgb2YgaW50ZWdlcnMgd2hpY2ggc2F0aXNmaWVzIFg8c3ViPms8XC9zdWI+ID0gQTxzdWI+azxcL3N1Yj5cL0I8c3ViPms8XC9zdWI+ICgxICZsZTsgayAmbGU7IE4gJm1pbnVzOyAxKS48XC9wPlxyXG5cclxuPHA+SWYgaXQgaXMgcG9zc2libGUgdG8gZGlzdHJpYnV0ZSB0aGUgbmFhbiBpbiBhIGZhaXIgd2F5LCB0aGUgb3V0cHV0IG11c3Qgc2F0aXNmeSB0aGUgZm9sbG93aW5nIGNvbnN0cmFpbnRzOjxcL3A+XHJcblxyXG48dWw+XHJcblx0PGxpPjEgJmxlOyBCPHN1Yj5rPFwvc3ViPiAmbGU7IDEgMDAwIDAwMCAwMDAgKDEgJmxlOyBrICZsZTsgTiAmbWludXM7IDEpLjxcL2xpPlxyXG5cdDxsaT4wICZsdDsgQTxzdWI+MTxcL3N1Yj5cL0I8c3ViPjE8XC9zdWI+ICZsdDsgQTxzdWI+MjxcL3N1Yj5cL0I8c3ViPjI8XC9zdWI+ICZsdDsgJm1pZGRvdDsgJm1pZGRvdDsgJm1pZGRvdDsgJmx0OyBBPHN1Yj5OJm1pbnVzOzE8XC9zdWI+XC9CPHN1Yj5OJm1pbnVzOzE8XC9zdWI+ICZsdDsgTC48XC9saT5cclxuXHQ8bGk+UDxzdWI+MTxcL3N1Yj4sIC4gLiAuICwgUDxzdWI+TjxcL3N1Yj4gaXMgYSBwZXJtdXRhdGlvbiBvZiAxLCAuIC4gLiAsIE4uPFwvbGk+XHJcblx0PGxpPkluIHRoZSBkaXN0cmlidXRpb24sIHRoZSBhbW91bnQgb2YgaGFwcGluZXNzIHdoaWNoIGktdGggcGVyc29uIHdpbGwgZ2V0IGlzIG1vcmUgdGhhbiBvciBlcXVhbCB0byAoVjxzdWI+aSwxPFwvc3ViPiArIFY8c3ViPmksMjxcL3N1Yj4gKyAmbWlkZG90OyAmbWlkZG90OyAmbWlkZG90OyArIFY8c3ViPmksTDxcL3N1Yj4pXC9OICgxICZsZTsgaSAmbGU7IE4pLjxcL2xpPlxyXG48XC91bD5cclxuXHJcbjxwPkE8c3ViPms8XC9zdWI+IGFuZCBCPHN1Yj5rPFwvc3ViPiBhcmUgbm90IG5lY2Vzc2FyeSB0byBiZSBjb3ByaW1lICgxICZsZTsgayAmbGU7IE4gJm1pbnVzOyAxKS4gVW5kZXIgdGhlIGNvbnN0cmFpbnRzIG9mIHRoZSBpbnB1dCwgaXQgY2FuIGJlIHByb3ZlZCB0aGF0IGlmIGEgZmFpciBkaXN0cmlidXRpb24gZXhpc3RzLCB0aGVyZSBpcyBhIGNvcnJlY3Qgb3V0cHV0IHdoaWNoIHNhdGlzZmllcyAxICZsZTsgQjxzdWI+azxcL3N1Yj4gJmxlOyAxIDAwMCAwMDAgMDAwICgxICZsZTsgayAmbGU7IE4gJm1pbnVzOyAxKS48XC9wPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIwIiwicHJvYmxlbV9sYW5nX2NvZGUiOiJcdWM2MDFcdWM1YjQiLCJsaW1pdCI6Ijx1bD5cclxuXHQ8bGk+MiAmbGU7IE4gJmxlOyAyIDAwMC48XC9saT5cclxuXHQ8bGk+MSAmbGU7IEwgJmxlOyAyIDAwMC48XC9saT5cclxuXHQ8bGk+MSAmbGU7IFY8c3ViPmksIGo8XC9zdWI+ICZsZTsgMTAwIDAwMCAoMSAmbGU7IGkgJmxlOyBOLCAxICZsZTsgaiAmbGU7IEwpLjxcL2xpPlxyXG48XC91bD5cclxuIiwic2FtcGxlX2V4cGxhaW5fMSI6IjxwPkluIHRoaXMgc2FtcGxlLCB0aGUgZmlyc3QgcGVyc29uIHdpbGwgZ2V0IGhhcHBpbmVzcyBvZiAyICsgNyArIDEgKyA4ICsgMiA9IDIwIHdoZW4gc2hlIGVhdHMgdGhlIHdob2xlIG5hYW4gYW5kIHRoZSBzZWNvbmQgcGVyc29uIHdpbGwgZ2V0IGhhcHBpbmVzcyBvZiAzICsgMSArIDQgKyAxICsgNSA9IDE0IHdoZW4gc2hlIGVhdHMgdGhlIHdob2xlIG5hYW4uIFRodXMsIGlmIHRoZSBmaXJzdCBwZXJzb24gZ2V0cyBoYXBwaW5lc3Mgb2YgbW9yZSB0aGFuIG9yIGVxdWFsIHRvIDIwXC8yID0gMTAgYW5kIHRoZSBzZWNvbmQgcGVyc29uIGdldHMgaGFwcGluZXNzIG9mIG1vcmUgdGhhbiBvciBlcXVhbCB0byAxNFwvMiA9IDcsIHRoZSBkaXN0cmlidXRpb24gaXMgZmFpci48XC9wPlxyXG5cclxuPHA+SWYgeW91IGN1dCB0aGUgbmFhbiBhdCB0aGUgcG9zaXRpb24gMTRcLzUgLCB0aGUgZmlyc3QgcGVyc29uIHdpbGwgZ2V0IGhhcHBpbmVzcyBvZiAxICZ0aW1lczsgMVwvNSArIDggKyAyJm5ic3A7ID0gNTFcLzUgYW5kIHRoZSBzZWNvbmQgcGVyc29uIHdpbGwgZ2V0IGhhcHBpbmVzcyBvZiAzICsgMSArIDQgJnRpbWVzOyA0XC81ID0gMzZcLzUuIEhlbmNlLCB0aGlzIGlzIGEgZmFpciBkaXN0cmlidXRpb24uPFwvcD5cclxuIiwic2FtcGxlX2V4cGxhaW5fMiI6IjxwPkluIHRoaXMgc2FtcGxlLCB0aGUgbmFhbiBoYXMgb25seSBvbmUgZmxhdm9yLiBJZiB5b3UgZXF1YWxseSBkaXZpZGUgdGhlIG5hYW4gaW50byA3IHBpZWNlcywgdGhlIGRpc3RyaWJ1dGlvbiB3aWxsIGJlIGZhaXIsIHJlZ2FyZGxlc3Mgb2YgUDxzdWI+MTxcL3N1Yj4sIC4gLiAuICwgUDxzdWI+TjxcL3N1Yj4uPFwvcD5cclxuIiwic2FtcGxlX2V4cGxhaW5fMyI6IjxwPk5vdGUgdGhhdCBBPHN1Yj5rPFwvc3ViPiBhbmQgQjxzdWI+azxcL3N1Yj4gYXJlIG5vdCBuZWNlc3NhcnkgdG8gYmUgY29wcmltZSAoMSAmbGU7IGsgJmxlOyBOICZtaW51czsgMSkuPFwvcD5cclxuIn1d